Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Plant Sci ; 12: 635784, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211482

RESUMO

Flowering is of utmost relevance for the agricultural productivity of the sugarcane bioeconomy, but data and knowledge of the genetic mechanisms underlying its photoperiodic induction are still scarce. An understanding of the molecular mechanisms that regulate the transition from vegetative to reproductive growth in sugarcane could provide better control of flowering for breeding. This study aimed to investigate the transcriptome of +1 mature leaves of a sugarcane cultivar subjected to florally inductive and non-inductive photoperiodic treatments to identify gene expression patterns and molecular regulatory modules. We identified 7,083 differentially expressed (DE) genes, of which 5,623 showed significant identity to other plant genes. Functional group analysis showed differential regulation of important metabolic pathways involved in plant development, such as plant hormones (i.e., cytokinin, gibberellin, and abscisic acid), light reactions, and photorespiration. Gene ontology enrichment analysis revealed evidence of upregulated processes and functions related to the response to abiotic stress, photoprotection, photosynthesis, light harvesting, and pigment biosynthesis, whereas important categories related to growth and vegetative development of plants, such as plant organ morphogenesis, shoot system development, macromolecule metabolic process, and lignin biosynthesis, were downregulated. Also, out of 76 sugarcane transcripts considered putative orthologs to flowering genes from other plants (such as Arabidopsis thaliana, Oryza sativa, and Sorghum bicolor), 21 transcripts were DE. Nine DE genes related to flowering and response to photoperiod were analyzed either at mature or spindle leaves at two development stages corresponding to the early stage of induction and inflorescence primordia formation. Finally, we report a set of flowering-induced long non-coding RNAs and describe their level of conservation to other crops, many of which showed expression patterns correlated against those in the functionally grouped gene network.

3.
PLoS One ; 15(11): e0241493, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33166323

RESUMO

Sugarcane mosaic virus (SCMV) is the causal agent of sugarcane mosaic disease (SMD) in Brazil; it is mainly controlled by using resistant cultivars. Studies on the changes in sugarcane transcriptome provided the first insights about the molecular basis underlying the genetic resistance to SMD; nonetheless, epigenetic modifications such as cytosine methylation is also informative, considering its roles in gene expression regulation. In our previous study, differentially transcribed fragments (DTFs) were obtained using cDNA-amplified fragment length polymorphism by comparing mock- and SCMV-inoculated plants from two sugarcane cultivars with contrasting responses to SMD. In this study, the identification of unexplored DTFs was continued while the same leaf samples were used to evaluate SCMV-mediated changes in the cytosine methylation pattern by using methylation-sensitive amplification polymorphism. This analysis revealed minor changes in cytosine methylation in response to SCMV infection, but distinct changes between the cultivars with contrasting responses to SMD, with higher hypomethylation events 24 and 72 h post-inoculation in the resistant cultivar. The differentially methylated fragments (DMFs) aligned with transcripts, putative promoters, and genomic regions, with a preponderant distribution within CpG islands. The transcripts found were associated with plant immunity and other stress responses, epigenetic changes, and transposable elements. The DTFs aligned with transcripts assigned to stress responses, epigenetic changes, photosynthesis, lipid transport, and oxidoreductases, in which the transcriptional start site is located in proximity with CpG islands and tandem repeats. Real-time quantitative polymerase chain reaction results revealed significant upregulation in the resistant cultivar of aspartyl protease and VQ protein, respectively, selected from DMF and DTF alignments, suggesting their roles in genetic resistance to SMD and supporting the influence of cytosine methylation in gene expression. Thus, we identified new candidate genes for further validation and showed that the changes in cytosine methylation may regulate important mechanisms underlying the genetic resistance to SMD.


Assuntos
Citosina/metabolismo , Metilação de DNA/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Potyvirus/fisiologia , Saccharum/genética , Saccharum/virologia , Transcrição Gênica , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Sci Rep ; 9(1): 5877, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971733

RESUMO

We used primers designed on conserved gene regions of several species to isolate the most expressed genes of the lignin pathway in four Saccharum species. S. officinarum and S. barberi have more sucrose in the culms than S. spontaneum and S. robustum, but less polysaccharides and lignin in the cell wall. S. spontaneum, and S. robustum had the lowest S/G ratio and a lower rate of saccharification in mature internodes. Surprisingly, except for CAD, 4CL, and CCoAOMT for which we found three, two, and two genes, respectively, only one gene was found for the other enzymes and their sequences were highly similar among the species. S. spontaneum had the highest expression for most genes. CCR and CCoAOMT B presented the highest expression; 4CL and F5H showed increased expression in mature tissues; C3H and CCR had higher expression in S. spontaneum, and one of the CADs isolated (CAD B) had higher expression in S. officinarum. The similarity among the most expressed genes isolated from these species was unexpected and indicated that lignin biosynthesis is conserved in Saccharum including commercial varieties Thus the lignin biosynthesis control in sugarcane may be only fully understood with the knowledge of the promotor region of each gene.


Assuntos
Lignina/metabolismo , Saccharum/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Fenóis/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polissacarídeos/metabolismo , Regiões Promotoras Genéticas , Saccharum/classificação , Saccharum/genética , Especificidade da Espécie
5.
PLoS One ; 10(8): e0134909, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26241317

RESUMO

Sugarcane is an important crop worldwide for sugar and first generation ethanol production. Recently, the residue of sugarcane mills, named bagasse, has been considered a promising lignocellulosic biomass to produce the second-generation ethanol. Lignin is a major factor limiting the use of bagasse and other plant lignocellulosic materials to produce second-generation ethanol. Lignin biosynthesis pathway is a complex network and changes in the expression of genes of this pathway have in general led to diverse and undesirable impacts on plant structure and physiology. Despite its economic importance, sugarcane genome was still not sequenced. In this study a high-throughput transcriptome evaluation of two sugarcane genotypes contrasting for lignin content was carried out. We generated a set of 85,151 transcripts of sugarcane using RNA-seq and de novo assembling. More than 2,000 transcripts showed differential expression between the genotypes, including several genes involved in the lignin biosynthetic pathway. This information can give valuable knowledge on the lignin biosynthesis and its interactions with other metabolic pathways in the complex sugarcane genome.


Assuntos
Lignina/análise , RNA de Plantas/genética , Saccharum/genética , Transcriptoma , Sequência de Aminoácidos , Sequência de Bases , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genes de Plantas , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Lignina/biossíntese , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Caules de Planta/metabolismo , RNA de Plantas/biossíntese , RNA de Plantas/isolamento & purificação , Saccharum/química , Homologia de Sequência
6.
J Agric Food Chem ; 63(19): 4708-20, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25936563

RESUMO

The lignin deposition in the stem of two sugarcane genotypes was assessed on exposure to water stress. The lignin content and the morphoanatomical characterization of the stem indicated that IACSP94-2094 plants are more lignified than those of IACSP95-5000 genotype, under normal water supply conditions, which was especially associated with higher lignin contents in the rind of mature internodes. Water deficit had negative impact on the biomass production, mostly with IACSP94-2094 plants, possibly due to stress severity or higher susceptibility of that genotype during the stem-lengthening phase. Water deficit led to significant alterations in the expression levels of lignin biosynthesis genes and led to an approximate 60% increase of lignin content in the rind of young internodes in both genotypes. It is concluded that the young rind region was more directly affected by water stress and, depending on the genotype, a higher lignin accumulation may occur in the stem, thus implying lower quality biomass for bioethanol production.


Assuntos
Regulação da Expressão Gênica de Plantas , Lignina/química , Proteínas de Plantas/genética , Saccharum/metabolismo , Água/metabolismo , Genótipo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/química , Caules de Planta/metabolismo , Saccharum/química , Saccharum/genética
7.
BMC Res Notes ; 5: 634, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23148685

RESUMO

BACKGROUND: The genus Eucalyptus consists of approximately 600 species and subspecies and has a physiological plasticity that allows some species to propagate in different regions of the world. Eucalyptus is a major source of cellulose for paper manufacturing, and its cultivation is limited by weather conditions, particularly water stress and low temperatures. Gene expression studies using quantitative reverse transcription polymerase chain reaction (qPCR) require reference genes, which must have stable expression to facilitate the comparison of the results from analyses using different species, tissues, and treatments. Such studies have been limited in eucalyptus. RESULTS: Eucalyptus globulus Labill, Eucalyptus urograndis (hybrid from Eucalyptus urophylla S.T. Blake X Eucalyptus grandis Hill ex-Maiden) and E. uroglobulus (hybrid from E. urograndis X E. globulus) were subjected to different treatments, including water deficiency and stress recovery, low temperatures, presence or absence of light, and their respective controls. Except for treatment with light, which examined the seedling hypocotyl or apical portion of the stem, the expression analyses were conducted in the apical and basal parts of the stem. To select the best pair of genes, the bioinformatics tools GeNorm and NormFinder were compared. Comprehensive analyses that did not differentiate between species, treatments, or tissue types, showed that IDH (isocitrate dehydrogenase), SAND (SAND protein), ACT (actin), and A-Tub (α-tubulin) genes were the most stable. IDH was the most stable gene in all of the treatments. CONCLUSION: Comparing these results with those of other studies on eucalyptus, we concluded that five genes are stable in different species and experimental conditions: IDH, SAND, ACT, A-Tub, and UBQ (ubiquitin). It is usually recommended a minimum of two reference genes is expression analysis; therefore, we propose that IDH and two others genes among the five identified genes in this study should be used as reference genes for a wide range of conditions in eucalyptus.


Assuntos
DNA de Plantas/metabolismo , Eucalyptus/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Estresse Fisiológico/genética , Actinas/genética , Calibragem , Temperatura Baixa , Biologia Computacional , Escuridão , Secas , Eucalyptus/classificação , Eucalyptus/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Isocitrato Desidrogenase/genética , Luz , Proteínas de Plantas/metabolismo , Caules de Planta , Padrões de Referência , Reprodutibilidade dos Testes , Tubulina (Proteína)/genética , Ubiquitina/genética , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...