Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36772322

RESUMO

Developing innovative systems and operations to monitor forests and send alerts in dangerous situations, such as fires, has become, over the years, a necessary task to protect forests. In this work, a Wireless Sensor Network (WSN) is employed for forest data acquisition to identify abrupt anomalies when a fire ignition starts. Even though a low-power LoRaWAN network is used, each module still needs to save power as much as possible to avoid periodic maintenance since a current consumption peak happens while sending messages. Moreover, considering the LoRaWAN characteristics, each module should use the bandwidth only when essential. Therefore, four algorithms were tested and calibrated along real and monitored events of a wildfire. The first algorithm is based on the Exponential Smoothing method, Moving Averages techniques are used to define the other two algorithms, and the fourth uses the Least Mean Square. When properly combined, the algorithms can perform a pre-filtering data acquisition before each module uses the LoRaWAN network and, consequently, save energy if there is no necessity to send data. After the validations, using Wildfire Simulation Events (WSE), the developed filter achieves an accuracy rate of 0.73 with 0.5 possible false alerts. These rates do not represent a final warning to firefighters, and a possible improvement can be achieved through cloud-based server algorithms. By comparing the current consumption before and after the proposed implementation, the modules can save almost 53% of their batteries when is no demand to send data. At the same time, the modules can maintain the server informed with a minimum interval of 15 min and recognize abrupt changes in 60 s when fire ignition appears.

2.
Sensors (Basel) ; 22(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36502234

RESUMO

Rehabilitation robotics aims to facilitate the rehabilitation procedure for patients and physical therapists. This field has a relatively long history dating back to the 1990s; however, their implementation and the standardisation of their application in the medical field does not follow the same pace, mainly due to their complexity of reproduction and the need for their approval by the authorities. This paper aims to describe architecture that can be applied to industrial robots and promote their application in healthcare ecosystems. The control of the robotic arm is performed using the software called SmartHealth, offering a 2 Degree of Autonomy (DOA). Data are gathered through electromyography (EMG) and force sensors at a frequency of 45 Hz. It also proves the capabilities of such small robots in performing such medical procedures. Four exercises focused on shoulder rehabilitation (passive, restricted active-assisted, free active-assisted and Activities of Daily Living (ADL)) were carried out and confirmed the viability of the proposed architecture and the potential of small robots (i.e., the UR3) in rehabilitation procedure accomplishment. This robot can perform the majority of the default exercises in addition to ADLs but, nevertheless, their limits were also uncovered, mainly due to their limited Range of Motion (ROM) and cost.


Assuntos
Robótica , Reabilitação do Acidente Vascular Cerebral , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Robótica/métodos , Atividades Cotidianas , Ecossistema , Extremidade Superior
3.
Sensors (Basel) ; 20(3)2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046244

RESUMO

The use of robots to map disaster-stricken environments can prevent rescuers from being harmed when exploring an unknown space. In addition, mapping a multi-robot environment can help these teams plan their actions with prior knowledge. The present work proposes the use of multiple unmanned aerial vehicles (UAVs) in the construction of a topological map inspired by the way that bees build their hives. A UAV can map a honeycomb only if it is adjacent to a known one. Different metrics to choose the honeycomb to be explored were applied. At the same time, as UAVs scan honeycomb adjacencies, RGB-D and thermal sensors capture other data types, and then generate a 3D view of the space and images of spaces where there may be fire spots, respectively. Simulations in different environments showed that the choice of metric and variation in the number of UAVs influence the number of performed displacements in the environment, consequently affecting exploration time and energy use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...