Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 79(1): 215-23, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17194142

RESUMO

The fundamental aspects and the capillary electrophoresis usage of thermal marks are presented. The so-called thermal mark is a perturbation of the electrolyte concentration generated by a punctual heating of the capillary while the separation electric field is maintained. The heating pulse is obtained by powering tungsten filaments or surface mount device resistors with 5 V during a few tens to hundreds of milliseconds. In the proposed model, the variation of the transport numbers with the rising temperature leads to the formation of low- and high-concentration regions during the heating. After cooling down, the initial mobilities of the species are restored and these regions (the thermal mark) migrate chiefly due to the electroosmotic flow (EOF). The mark may be recorded with a conductivity detector as part of a usual electropherogram and be used to index the analyte peaks and thus compensate for variations of the EOF. In a favorable case, 10 mmol/L KCl solution, the theory suggests that the error in the measurement of EOF mobility by this mean is only -6.5 x 10(-7) cm2 V-1 s-1. The method was applied to the analysis of alkaline ions in egg white, and the relative standard deviations of the corrected mobilities of these ions were smaller than 1%. This is a challenging matrix, because albumin reduces the EOF to 20% of its initial value after 11 runs. The combination of thermal mark, electrolysis separated, and contactless conductivity detection allowed the measurement of the EOF of a silica capillary with unbuffered KCl solution with constant ionic strength. The overall approach is advantageous, because one can easily control the chemical composition of the solution in contact with the inner surface of the capillary.

2.
Anal Chem ; 77(2): 607-14, 2005 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-15649060

RESUMO

The use of two additional reservoirs to accommodate the electrodes of the power source is proposed to improve the stability of the running electrolyte in capillary electrophoresis. The basic idea is to use salt bridges to connect those reservoirs to the ones containing the capillary ends. Although simple, there are several issues that can be considered in the design and implementation of such system in order to prevent undesired transference of material between the electrolysis and the main reservoirs. The use of a sealed electrolysis reservoir without a gas phase, the use of materials that ensure volume stability, and the use of bridges as long as possible are three basic directions. A compromise is involved in the dimensions of the sectional area of the bridge, because a small area diminishes the amount of a species transferred by diffusion but leads to an undesirable increase of the electrical field during the electrophoretic running. Thus, a bridge composed of a main wide-bore tube connected to a small-bore capillary seems to give the best performance for practical use. A simple electrolysis-separated system was adapted to a preexisting capillary electrophoresis system, and its performance was evaluated with a mixture of tartaric, malic, and succinic acids that was separated in sodium benzoate solution (pH 5.5) using the original equipment and the modified one. Due to the water electrolysis and the small buffering capacity of the electrolyte, there was a significant pH change and consequently changes in the effective mobilities of the analytes and loss of resolution after a few runs using the original equipment. Using the electrolysis-separated system, no significant change in the migration time and resolution was observed even after 15 runs. Besides the freedom to prepare running electrolytes with electroactive species or unbuffered solution, high throughput and the use of small reservoirs, such as the ones used in microfluidic devices, are the main advantages of the system.

3.
Anal Chem ; 75(15): 3853-8, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-14572053

RESUMO

A new microfabrication process based on a xerographic process is described. A laser printer is used to selectively deposit toner on a polyester film, which is subsequently laminated against another polyester film. The toner layer binds the two polyester films and allows the blank regions to become channels for microfluidics. These software-outlined channels are approximately 6 microm deep. Approximately twice this depth is obtained by laminating two printed films. The resulting devices were not significantly damaged after 24 h of exposure to aqueous solutions of H3PO4, NaOH, methanol, acetonitrile, or sodium dodecyl sulfate. Electric tests with an impedance analyzer and microchannels filled with KCl solution demonstrated that (1) wide channels suffer from deformation of the top and bottom walls due to the lamination of the polyester films and (2) the toner walls are somewhat porous. Although these drawbacks limit the maximum width of a channel and the minimum distance between two channels, the process is an attractive option to other expensive, laborious, and time-consuming methods for microchannels fabrication. The process has been used to implement devices for electrospray tip and capillary electrophoresis with contactless conductivity detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA