Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 19(22): 14306-14318, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28537605

RESUMO

This study reports on understanding the formation of bubbles in ionic liquids (ILs), with a view to utilising ILs more efficiently in gas capture processes. In particular, the impact of the IL structure on the bubble sizes obtained has been determined in order to obtain design principles for the ionic liquids utilised. 11 ILs were used in this study with a range of physico-chemical properties in order to determine parametrically the impact on bubble size due to the liquid properties and chemical moieties present. The results suggest the bubble size observed is dictated by the strength of interaction between the cation and anion of the IL and, therefore, the mass transport within the system. This bubble size - ILs structure-physical property relationship has been illustrated using a series of QSPR correlations. A predictive model based only on the sigma profiles of the anions and cations has been developed which shows the best correlation without the need to incorporate the physico-chemical properties of the liquids. Depending on the IL, selected mean bubble sizes observed were between 56.1 and 766.9 µm demonstrating that microbubbles can be produced in the IL allowing the potential for enhanced mass transport and absorption kinetics in these systems.

2.
Appl Opt ; 55(26): 7392, 2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27661379

RESUMO

This note reports changes to the author list and additional funding sources for [Appl. Opt.55, 6102 (2016)].APOPAI0003-693510.1364/AO.55.006102.

3.
Appl Opt ; 55(22): 6102-7, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27505394

RESUMO

Recently, the number of uses of bubbles has begun to increase dramatically, with medicine, biofuel production, and wastewater treatment just some of the industries taking advantage of bubble properties, such as high mass transfer. As a result, more and more focus is being placed on the understanding and control of bubble formation processes and there are currently numerous techniques utilized to facilitate this understanding. Acoustic bubble sizing (ABS) and laser scattering techniques are able to provide information regarding bubble size and size distribution with minimal data processing, a major advantage over current optical-based direct imaging approaches. This paper demonstrates how direct bubble-imaging methods can be improved upon to yield high levels of automation and thus data comparable to ABS and laser scattering. We also discuss the added benefits of the direct imaging approaches and how it is possible to obtain considerable additional information above and beyond that which ABS and laser scattering can supply. This work could easily be exploited by both industrial-scale operations and small-scale laboratory studies, as this straightforward and cost-effective approach is highly transferrable and intuitive to use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...