Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(18): 20385-20392, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35005903

RESUMO

GaInP2 has shown promise as the wide bandgap top junction in tandem absorber photoelectrochemical (PEC) water splitting devices. Among previously reported dual-junction PEC devices with a GaInP2 top cell, those with the highest performance incorporate an AlInP2 window layer (WL) to reduce surface recombination and a thin GaInP2 capping layer (CL) to protect the WL from corrosion in electrolytes. However, the stability of these III-V systems is limited, and durability continues to be a major challenge broadly in the field of PEC water splitting. This work provides a systematic investigation into the durability of GaInP2 systems, examining the impacts of the window layer and capping layer among single junction pn-GaInP2 photocathodes coated with an MoS2 catalytic and protective layer. The photocathode with both a CL and WL demonstrates the highest PEC performance and longest lifetime, producing a significant current for >125 h. In situ optical imaging and post-test characterization illustrate the progression of macroscopic degradation and chemical state. The surface architecture combining an MoS2 catalyst, CL, and WL can be translated to dual-junction PEC devices with GaInP2 or other III-V top junctions to enable more efficient and stable PEC systems.

2.
J Phys Chem Lett ; 7(11): 2044-9, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27196435

RESUMO

Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis because MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, and light-limited current density) after 60 h of operation. This represents a 500-fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...