Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(43): 15665-15668, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37882137

RESUMO

A class of Gd(III) coiled coils achieve high MRI relaxivity, in part due to their slow rotational correlation time. However, extending their length is unable to further enhance performance, as the mechanism by which relaxivity is achieved is dominated by the presence of three inner sphere waters in rapid exchange, through an associative mechanism.

2.
MRS Adv ; 6(18): 467-471, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721891

RESUMO

ABSTRACT: Poly(vinyl alcohol) cryogel (PVA) is a versatile biomaterial used to replicate the biomechanics of tissues. Additive manufacture (AM) at sub-zero (°C) temperatures enables the manufacture of PVA with complex geometry; however, the effect of processing parameters on the mechanical properties of PVA has not been evaluated. The aim of this study is to understand the impact of print nozzle diameter and orientation on the viscoelastic mechanical properties of PVA. Samples of sub-zero AM PVA, with different filament thicknesses, were tested under tension relative to the print direction, to calculate the storage and loss moduli. As the nozzle size was decreased, AM PVA exhibited more pronounced orthotropic properties; the smallest size showed a 33% decrease in storage moduli when tested perpendicular to the print direction, as opposed to parallel. This study has demonstrated the ability of sub-zero AM to tailor the orthotropic properties of PVA. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1557/s43580-021-00086-1.

3.
Mater Sci Eng C Mater Biol Appl ; 129: 112383, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34579902

RESUMO

Poly(vinyl alcohol) (PVA) cryogel is a biocompatible, synthetic hydrogel, compatible with magnetic resonance (MR) imaging. It is widely used as a biomaterial in tissue scaffolds and mimics to test various diagnostic techniques. The aim of this study is to characterise the effect of varying PVA concentration, molecular weight (MW) and manufacturing protocol on the viscoelastic mechanical properties and MR T2 relaxation time. Further to this MR imaging (MRI) was investigated as a method to quantify material homogeneity. Cylindrical samples of PVA, of varying MW, concentration and number of freeze thaw cycles (FTCs), were manufactured. Dynamic mechanical analysis was performed to evaluate the storage and loss moduli between frequencies of 0.5 and 10 Hz. MR T2 relaxation maps were imaged using a 7 T MRI instrument. Storage and loss moduli were shown to increase with MW, concentration, or the number of FTCs; with storage modulus ranging from 55 kPa to 912 kPa and loss modulus ranging from 6 kPa to 103 kPa. MR T2 relaxation time was shown to increase linearly with PVA concentration. The qualitative and quantitative heterogeneity of the PVA sample were identified through MR T2 relaxation time maps. Excitingly, PVA demonstrated a composition-dependent casual correlation between the viscoelastic mechanical properties and MR T2 relaxation time. In conclusion, this research thoroughly characterised the viscoelastic mechanical properties of PVA to support its extensive use as a biomaterial, and demonstrated the use of MRI to non-invasively identify sample heterogeneity and to predict the composition-dependent viscoelastic properties of PVA.


Assuntos
Criogéis , Álcool de Polivinil , Materiais Biocompatíveis , Imageamento por Ressonância Magnética , Alicerces Teciduais
4.
J Magn Reson ; 250: 17-24, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25459883

RESUMO

Magnetic resonance imaging (MRI) in the presence of metallic structures is very common in medical and non-medical fields. Metallic structures cause MRI image distortions by three mechanisms: (1) static field distortion through magnetic susceptibility mismatch, (2) eddy currents induced by switched magnetic field gradients and (3) radio frequency (RF) induced eddy currents. Single point ramped imaging with T1 enhancement (SPRITE) MRI measurements are largely immune to susceptibility and gradient induced eddy current artifacts. As a result, one can isolate the effects of metal objects on the RF field. The RF field affects both the excitation and detection of the magnetic resonance (MR) signal. This is challenging with conventional MRI methods, which cannot readily separate the three effects. RF induced MRI artifacts were investigated experimentally at 2.4 T by analyzing image distortions surrounding two geometrically identical metallic strips of aluminum and lead. The strips were immersed in agar gel doped with contrast agent and imaged employing the conical SPRITE sequence. B1 mapping with pure phase encode SPRITE was employed to measure the B1 field around the strips of metal. The strip geometry was chosen to mimic metal electrodes employed in electrochemistry studies. Simulations are employed to investigate the RF field induced eddy currents in the two metallic strips. The RF simulation results are in good agreement with experimental results. Experimental and simulation results show that the metal has a pronounced effect on the B1 distribution and B1 amplitude in the surrounding space. The electrical conductivity of the metal has a minimal effect.

5.
Magn Reson Imaging ; 21(3-4): 213-9, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12850710

RESUMO

In recent years there has been increasing interest in applying magnetic resonance (MR) techniques in areas of engineering and chemical technology. The science that underpins many of these applications is the physics and chemistry of transport and reaction processes in porous materials. Key to the exploitation of MR methods will be our ability to demonstrate that MR yields information that cannot be obtained using conventional measurement techniques in engineering research. This article describes two case studies that highlight the power of MR to give new insights to chemical engineers. First, we demonstrate the application of MR techniques to explore both mass transfer and chemical conversion in situ within a fixed bed of catalyst, and we then use these data to identify the rate-controlling step of the chemical conversion. Second, we implement a rapid imaging technique to study the stability of the gas-liquid distribution in the low- and high-interaction two-phase flow regimes in a trickle-bed reactor.


Assuntos
Imageamento por Ressonância Magnética/métodos , Ácido Acético , Gases , Metanol , Modelos Teóricos , Porosidade , Reologia
6.
Magn Reson Imaging ; 19(3-4): 325-31, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11445307

RESUMO

Measurements are presented which correlate the displacements, X(Delta), determined by PGSE NMR, with the multi-mode transverse 1H NMR relaxation of water flowing through a glass bead pack, for which the dominant relaxation mechanism is diffusion through inhomogeneous internal magnetic fields. Analytical solution for the joint amplitude A[X(Delta), T(2k)] for the case of laminar flow in a circular pipe, with a diffusion-to-surface mechanism, shows that, for other than the lowest mode (k = 0), the contributions to the observed relaxation for a given X(Delta) may involve negative as well as positive amplitudes. The experimental measurements are shown to agree with this general conclusion, showing clear evidence of the presence of relaxation modes with negative amplitude at larger values of X(Delta). It is shown that in these, or similar measurements, which provide a spatially-resolved view of surface-mediated relaxation, allowance must be made for fitting with both positive and negative amplitudes.


Assuntos
Vidro/química , Espectroscopia de Ressonância Magnética/métodos , Água , Difusão , Modelos Teóricos , Porosidade , Prótons , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...