Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(27): e2219036120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364102

RESUMO

We report the preparation and spectroscopic characterization of a highly elusive copper site bound exclusively to oxygen donor atoms within a protein scaffold. Despite copper generally being considered unsuitable for use in MRI contrast agents, which in the clinic are largely Gd(III) based, the designed copper coiled coil displays relaxivity values equal to, or superior than, those of the Gd(III) analog at clinical field strengths. The creation of this new-to-biology proteinaceous CuOx-binding site demonstrates the power of the de novo peptide design approach to access chemistry for abiological applications, such as for the development of MRI contrast agents.


Assuntos
Meios de Contraste , Cobre , Cobre/metabolismo , Meios de Contraste/química , Imageamento por Ressonância Magnética , Sítios de Ligação , Peptídeos
2.
Front Cardiovasc Med ; 9: 883179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35833186

RESUMO

Coronary artery disease is among the primary causes of death worldwide. While synthetic grafts allow replacement of diseased tissue, mismatched mechanical properties between graft and native tissue remains a major cause of graft failure. Multi-layered grafts could overcome these mechanical incompatibilities by mimicking the structural heterogeneity of the artery wall. However, the layer-specific biomechanics of synthetic grafts under physiological conditions and their impact on endothelial function is often overlooked and/or poorly understood. In this study, the transmural biomechanics of four synthetic graft designs were simulated under physiological pressure, relative to the coronary artery wall, using finite element analysis. Using poly(vinyl alcohol) (PVA)/gelatin cryogel as the representative biomaterial, the following conclusions are drawn: (I) the maximum circumferential stress occurs at the luminal surface of both the grafts and the artery; (II) circumferential stress varies discontinuously across the media and adventitia, and is influenced by the stiffness of the adventitia; (III) unlike native tissue, PVA/gelatin does not exhibit strain stiffening below diastolic pressure; and (IV) for both PVA/gelatin and native tissue, the magnitude of stress and strain distribution is heavily dependent on the constitutive models used to model material hyperelasticity. While these results build on the current literature surrounding PVA-based arterial grafts, the proposed method has exciting potential toward the wider design of multi-layer scaffolds. Such finite element analyses could help guide the future validation of multi-layered grafts for the treatment of coronary artery disease.

3.
Phys Chem Chem Phys ; 23(38): 21913-21922, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34559172

RESUMO

A range of ethaline and reline deep eutectic solvents (DESs) have been investigated in the absence and presence of Zn (0-0.3 M) and water (0-29 wt%) by one-dimensional 1H NMR spectroscopy, two-dimensional 1H-1H nuclear Overhauser effect and exchange spectroscopy, 1H T1 NMR relaxation times and 1H NMR diffusion. The role of zinc and water in controlling solvation and microstructure in reline and ethaline were investigated. We show that in ethaline there is proton exchange between hydroxyl groups in ethaline glycol and choline chloride. The rate of exchange between these protons is found to significantly increase in the presence of Zn, but decreases with increasing water content. In the case of reline, no proton exchange is observed between the amide protons in urea and hydroxyl protons in choline chloride. However, the addition of water decreases the viscosity of the system, as well as changes the distance between amide and hydroxyl protons in urea and choline chloride, respectively. The addition of Zn does not appear to change the interactions between urea and choline chloride species, but does reduce the rate of exchange between water and hydroxyl protons in reline formulations containing water.

4.
Environ Sci Technol ; 55(13): 8742-8752, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34106702

RESUMO

Transported chemical reactions in unsaturated porous media are relevant to environmental and industrial applications. Continuum scale models are based on equivalent parameters derived from analogy with saturated conditions and cannot appropriately account for incomplete mixing. It is also unclear how the third dimension controls mixing and reactions. We obtain three-dimensional (3D) images by magnetic resonance imaging using an immiscible nonwetting liquid as a second phase and a fast irreversible bimolecular reaction. We study the impact of phase saturation on the dynamics of mixing and the reaction front. We quantify the temporally resolved effective reaction rate and describe it using the lamellar theory of mixing, which explains faster than Fickian (t0.5) rate of product formation by accounting for the deformation of the mixing interface between the two reacting fluids. For a given Péclet, although stretching and folding of the reactive front enhance as saturation decreases, enhancing the product formation, the product formation is larger as saturation increases. After breakthrough, the extinction of the reaction takes longer as saturation decreases because of the larger nonmixed volume behind the front. These results are the basis for a general model to better predict reactive transport in unsaturated porous media not achievable by the current continuum paradigm.


Assuntos
Modelos Teóricos , Porosidade
5.
Materials (Basel) ; 14(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923267

RESUMO

The applications of polymeric sponges are varied, ranging from cleaning and filtration to medical applications. The specific properties of polymeric foams, such as pore size and connectivity, are dependent on their constituent materials and production methods. Nuclear magnetic resonance imaging (MRI) and X-ray micro-computed tomography (µCT) offer complementary information about the structure and properties of porous media. In this study, we employed MRI, in combination with µCT, to characterize the structure of polymeric open-cell foam, and to determine how it changes upon compression, µCT was used to identify the morphology of the pores within sponge plugs, extracted from polyurethane open-cell sponges. MRI T2 relaxation maps and bulk T2 relaxation times measurements were performed for 7° dH water contained within the same polyurethane foams used for µCT. Magnetic resonance and µCT measurements were conducted on both uncompressed and 60% compressed sponge plugs. Compression was achieved using a graduated sample holder with plunger. A relationship between the average T2 relaxation time and maximum opening was observed, where smaller maximum openings were found to have a shorter T2 relaxation times. It was also found that upon compression, the average maximum opening of pores decreased. Average pore size ranges of 375-632 ± 1 µm, for uncompressed plugs, and 301-473 ± 1 µm, for compressed plugs, were observed. By determining maximum opening values and T2 relaxation times, it was observed that the pore structure varies between sponges within the same production batch, as well as even with a single sponge.

6.
J Colloid Interface Sci ; 582(Pt A): 201-211, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32823122

RESUMO

HYPOTHESIS: Vesicle-polymer dispersions are found in drug-delivery systems and consumer products but undergo phase separation. Previous studies of phase separation have focussed on systems with high density differences between continuous and vesicular phases. In this study, we investigate phase separation in vesicle-polymer mixtures with very small density differences, in the presence and absence of air bubbles. EXPERIMENTS: Magnetic resonance (MR) imaging, X-ray Computed Tomography and rheological measurements are reported which characterise the properties and stability of vesicle suspensions composed of the cationic surfactant, diethylesterdimethyl ammonium chloride, mixed with non-adsorbing polymer. 1H T2 MR relaxation images are employed to observe phase separation, for a range of vesicle-polymer mixtures, which are analysed using Moran's I spatial autocorrelation to quantify the extent and rate of phase separation. FINDINGS: It was found that in presence of air bubbles, phase separation follows a compression/collapse mechanism, typical of colloidal gels with large density differences between the phases. Without air bubbles, phase separation develops through the formation of tiny cracks and fractures in the samples. MRI enabled visualisation of the evolution of phase separation inside highly turbid samples. The rate of phase separation was found to generally increase with increasing polymer concentration and decrease with increasing vesicle volume fraction.

7.
J Phys Chem A ; 124(26): 5323-5330, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32501011

RESUMO

The hydration behavior of alkyl-diammonium di-cations and alkyl-dicarboxylate di-anions, of varying alkyl chain length, was examined using basin-hopping (BH) global optimization techniques. For every di-ion investigated, a conformational transition from linear to folded is observed at a critical hydration number, n*, specific to each di-ion. A stepwise hydration study has been undertaken for alkyl-dicarboxylate di-anions in finite water clusters containing 1-12 water molecules, and low-energy structures have been examined for larger water clusters. An even number of carbons in the alkyl chain gives rise to more stable conformations in unhydrated, implicitly solvated, and explicitly solvated conditions. This work provides valuable information on how the hydration of ammonium and carboxylate ions influence larger biomolecules' conformations.

8.
Nat Commun ; 11(1): 2083, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350276

RESUMO

Sodium-ion batteries are a promising battery technology for their cost and sustainability. This has led to increasing interest in the development of new sodium-ion batteries and new analytical methods to non-invasively, directly visualise battery chemistry. Here we report operando 1H and 23Na nuclear magnetic resonance spectroscopy and imaging experiments to observe the speciation and distribution of sodium in the electrode and electrolyte during sodiation and desodiation of hard carbon in a sodium metal cell and a sodium-ion full-cell configuration. The evolution of the hard carbon sodiation and subsequent formation and evolution of sodium dendrites, upon over-sodiation of the hard carbon, are observed and mapped by 23Na nuclear magnetic resonance spectroscopy and imaging, and their three-dimensional microstructure visualised by 1H magnetic resonance imaging. We also observe, for the first time, the formation of metallic sodium species on hard carbon upon first charge (formation) in a full-cell configuration.

9.
Chem Commun (Camb) ; 56(26): 3729-3732, 2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32129331

RESUMO

The metal hydration state within a designed coiled coil can be progressively tuned across the full integer range (3 → 0 aqua ligands), by careful choice of a second sphere terminal residue, including the lesser used Trp. Potential implications include a four-fold change in MRI relaxivity when applied to lanthanide coiled coils.


Assuntos
Complexos de Coordenação/química , Gadolínio/química , Peptídeos/química , Sequência de Aminoácidos , Sítios de Ligação , Ligação Proteica
10.
J Colloid Interface Sci ; 535: 1-7, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30268892

RESUMO

Surfactant crystallisation is important in many applications in the food, consumer product and medical sectors. However, these processes are not well understood. In particular, surfactant crystallisation can be detrimental to the stability of detergent formulations, such as dish liquid products, resulting in a turbid solution that fails appearance criteria. With the rising global demand for detergent products, understanding the factors that influence formulation stability is of increasing importance. To enable industry to build more robust formulations, it is important to understand the underlying chemistry of the crystallisation process. Here, a model system containing anionic (sodium dodecyl sulfate, SDS) and amphoteric (N,N-dimethyldodecylamine N-oxide, DDAO) surfactants, at concentrations typical of dish liquid products, is studied. Variable temperature 1H nuclear magnetic resonance (NMR) spectroscopy and small-angle X-ray scattering (SAXS) is used to probe the compositional and structural properties of this system, as a function of pH. On cooling, at pH 9, a mixture of hydrated crystals, predominately composed of SDS, and micelles containing both surfactants, have been observed prior to complete freezing. At pH 2, both surfactants appear to undergo a simultaneous phase transition, resulting in the removal of micelles and the formation of hydrated crystals of mixed composition.

11.
J Colloid Interface Sci ; 527: 260-266, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29800875

RESUMO

HYPOTHESIS: At low temperatures stability issues arise in commercial detergent products when surfactant crystallisation occurs, a process which is not currently well-understood. An understanding of the phase transition can be obtained using a simple binary SDS (sodium dodecyl sulfate) + DDAO (N,N-dimethyldodecylamine N-oxide) aqueous system. It expected that the crystallisation temperature of an SDS system can be lowered with addition of DDAO, thus providing a route to improve detergent stability. EXPERIMENTS: Detergent systems are typically comprised of anionic surfactants, non-ionic surfactants and water. This study explores the crystallisation of a three component system consisting of sodium dodecyl sulfate (SDS), N,N-dimethyldodecylamine N-oxide (DDAO), and water using wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC) and confocal Raman microscopy. FINDINGS: The presence of DDAO lowered the crystallisation temperature of a 20 wt% SDS system. For all aqueous mixtures of SDS + DDAO at low temperatures, SDS hydrated crystals, SDS.1/2H2O or SDS·H2O, formed. SDS hydrates comprising of layers of SDS separated by water layers. DDAO tended to reside in the vicinity of these SDS crystals. In the absence of DDAO an additional intermediary hydrate structure, SDS.1/8H2O, formed whereas for mixed SDS + DDAO systems no such structure was detected during crystallisation.

12.
Phys Chem Chem Phys ; 20(5): 3373-3380, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29260811

RESUMO

Contrast-variation small-angle neutron scattering (CV-SANS), small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR) measurements of diffusion and isothermal titration calorimetry (ITC) are used to gain insight into the aggregation of an alkyl-C60 derivative, molecule 1, in n-hexane, n-decane and toluene as a function of concentration and temperature. Results point to an associative mechanism of aggregation similar to other commonly associating molecules, including non-ionic surfactants or asphaltenes in non-aqueous solvents. Little aggregation is detected in toluene, but small micelle-like structures form in n-alkane solvents, which have a C60-rich core and alkyl-rich shell. The greatest aggregation extent is found in n-hexane, and at 0.1 M the micelles of 1 comprise around 6 molecules at 25 °C. These micelles become smaller when the concentration is lowered, or if the solvent is changed to n-decane. The solution structure is also affected by temperature, with a slightly larger aggregation extent at 10 °C than at 25 °C. At higher concentrations, for example in solutions of 1 above 0.3 M in n-decane, a bicontinuous network becomes apparent. Overall, these findings aid our understanding of the factors driving the assembly of alkyl-π-conjugated hydrophobic amphiphiles such as 1 in solution and thereby represent a step towards the ultimate goal of exploiting this phenomenon to form materials with well-defined order.

13.
J Colloid Interface Sci ; 513: 180-187, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29153711

RESUMO

In complex colloidal systems, particle-poor regions can develop within particle-rich phases during sedimentation or creaming. These particle-poor regions are overlooked by 1D profiles, which are typically used to assess particle distributions in a sample. Alternative methods to visualise and quantify these regions are required to better understand phase separation, which is the focus of this paper. Magnetic resonance imaging has been used to monitor the development of compositional heterogeneity in a vesicle-polymer mixture undergoing creaming. T2 relaxation time maps were used to identify the distribution of vesicles, with vesicle-poor regions exhibiting higher T2 relaxation times than regions richer in vesicles. Phase separated structures displayed a range of different morphologies and a variety of image analysis methods, including first-order statistics, Fourier transformation, grey level co-occurrence matrices and Moran's I spatial autocorrelation, were used to characterise these structures, and quantify their heterogeneity. Of the image analysis techniques used, Moran's I was found to be the most effective at quantifying the degree and morphology of phase separation, providing a robust, quantitative measure by which comparisons can be made between a diverse range of systems undergoing phase separation. The sensitivity of Moran's I can be enhanced by the choice of weight matrices used.

14.
Prog Nucl Magn Reson Spectrosc ; 101: 51-70, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28844221

RESUMO

As magnetic resonance imaging (MRI) can spatially resolve a wealth of molecular information available from nuclear magnetic resonance (NMR), it is able to non-invasively visualise the composition, properties and reactions of a broad range of spatially-heterogeneous molecular systems. Hence, MRI is increasingly finding applications in the study of chemical reactions and processes in a diverse range of environments and technologies. This article will explain the basic principles of MRI and how it can be used to visualise chemical composition and molecular properties, providing an overview of the variety of information available. Examples are drawn from the disciplines of chemistry, chemical engineering, environmental science, physics, electrochemistry and materials science. The review introduces a range of techniques used to produce image contrast, along with the chemical and molecular insight accessible through them. Methods for mapping the distribution of chemical species, using chemical shift imaging or spatially-resolved spectroscopy, are reviewed, as well as methods for visualising physical state, temperature, current density, flow velocities and molecular diffusion. Strategies for imaging materials with low signal intensity, such as those containing gases or low sensitivity nuclei, using compressed sensing, para-hydrogen or polarisation transfer, are discussed. Systems are presented which encapsulate the diversity of chemical and physical parameters observable by MRI, including one- and two-phase flow in porous media, chemical pattern formation, phase transformations and hydrodynamic (fingering) instabilities. Lastly, the emerging area of electrochemical MRI is discussed, with studies presented on the visualisation of electrochemical deposition and dissolution processes during corrosion and the operation of batteries, supercapacitors and fuel cells.

15.
Magn Reson Chem ; 55(5): 425-432, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-26857914

RESUMO

The effects of different n-alkanol co-surfactants on the size, shape, composition and dynamics of reverse micelles (RMs) in cetyltrimethylammonium bromide (CTAB)/n-alkanol/n-hexane/water and CTAB/n-alkanol/n-pentane/water microemulsions were investigated using T2 relaxation and pulsed gradient stimulated echo nuclear magnetic resonance (NMR) measurements and molecular modelling. NMR T2 relaxation times and diffusion coefficients were determined for the surfactant and co-surfactant in these CTAB quaternary reverse microemulsions, for a range of medium chain length alcohol co-surfactants, from 1-butanol to 1-heptanol. These data revealed a slight RM size dependency on co-surfactant chain length, with RM sizes tending to decrease with increasing alcohol chain length. Molecular modelling of CTAB/n-alkanol/n-hexane/water RMs suggested a variation in RM shape with co-surfactant chain length, where those formed with pentanol were found to be least spherical and those formed with heptanol the most spherical. The NMR data also revealed differences in the behaviour of the micellar structures in the CTAB/n-pentanol/n-hexane/water reverse microemulsion, compared with the other reverse microemulsions in this study, where CTAB was found to be distributed between two environments, which then combined to form larger micelles. The origins of these differences remain unclear. Copyright © 2016 John Wiley & Sons, Ltd.

16.
Angew Chem Int Ed Engl ; 55(32): 9394-7, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27329307

RESUMO

Quantitative mapping of metal ions freely diffusing in solution is important across a diverse range of disciplines and is particularly significant for dissolution processes in batteries, metal corrosion, and electroplating/polishing of manufactured components. However, most current techniques are invasive, requiring sample extraction, insertion of an electrode, application of an electric potential or the inclusion of a molecular sensor. Thus, there is a need for techniques to visualize the distribution of metal ions non-invasively, in situ, quantitatively, in three dimensions (3D) and in real time. Here we have used (1) H magnetic resonance imaging (MRI) to make quantitative 3D maps showing evolution of the distribution of Cu(2+) ions, not directly visible by MRI, during the electrodissolution of copper, with high sensitivity and spatial resolution. The images are sensitive to the speciation of copper, the depletion of dissolved O2 in the electrolyte and show the dissolution of Cu(2+) ions is not uniform across the anode.

17.
Chem Sci ; 7(3): 2207-2216, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29899946

RESUMO

Herein, we establish for the first time the design principles for lanthanide coordination within coiled coils, and the important consequences of binding site translation. By interrogating design requirements and by systematically translating binding site residues, one can influence coiled coil stability and more importantly, the lanthanide coordination chemistry. A 10 Å binding site translation along a coiled coil, transforms a coordinatively saturated Tb(Asp)3(Asn)3 site into one in which three exogenous water molecules are coordinated, and in which the Asn layer is no longer essential for binding, Tb(Asp)3(H2O)3. This has a profound impact on the relaxivity of the analogous Gd(iii) coiled coil, with more than a four-fold increase in the transverse relaxivity (21 to 89 mM-1 s-1), by bringing into play, in addition to the outer sphere mechanism present for all Gd(iii) coiled coils, an inner sphere mechanism. Not only do these findings warrant further investigation for possible exploitation as MRI contrast agents, but understanding the impact of binding site translation on coordination chemistry has important repercussions for metal binding site design, taking us an important step closer to the predictable and truly de novo design of metal binding sites, for new functional applications.

18.
J Phys Chem B ; 118(36): 10767-75, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25134815

RESUMO

The size, shape, and composition of reverse micelles (RMs) in a cetyltrimethylammonium bromide (CTAB)/pentanol/n-hexane/water microemulsion were investigated using pulsed gradient stimulated echo (PGSTE) nuclear magnetic resonance (NMR) measurements and molecular modeling. PGSTE data were collected at observation times (Δ) of 10, 40, and 450 ms. At long observation times, CTAB and pentanol exhibited single diffusion coefficients. However, at short (Δ ≤ 40 ms) observation times both CTAB and pentanol exhibited slow and fast diffusion coefficients. These NMR data indicate that both CTAB and pentanol molecules reside in different environments within the microemulsion and that there is exchange between regions on the millisecond time scale. Molecular dynamic simulations of the CTAB RM, in a solvent box containing n-hexane and pentanol, produced an ellipsoid shaped RM. Using structural parameters from these simulations and the Stokes-Einstein relation, the structure factor and dimensions of the reverse micelle were determined. Analysis of the composition of the interphase also showed that there was a variation in the ratio of surfactant to cosurfactant molecules depending on the curvature of the interphase.

19.
Chemphyschem ; 15(9): 1731-6, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24789698

RESUMO

The development of improved energy-storage devices, as well as corrosion prevention and metal-electrofinishing technologies, requires knowledge of local composition and transport behaviour in electrolytes near bulk metals, in situ and in real time. It remains a challenge to acquire such data and new analytical methods are required. Recent work shows that magnetic resonance imaging (MRI) is able to map concentration gradients and visualise electrochemical processes in electrochemical cells containing bulk metals. This recent work, along with the challenges, and solutions, associated with MRI of these electrochemical cells are reviewed.

20.
J Am Chem Soc ; 136(4): 1166-9, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24405157

RESUMO

A new peptide sequence (MB1) has been designed which, in the presence of a trivalent lanthanide ion, has been programmed to self-assemble to form a three stranded metallo-coiled coil, Ln(III)(MB1)3. The binding site has been incorporated into the hydrophobic core using natural amino acids, restricting water access to the lanthanide. The resulting terbium coiled coil displays luminescent properties consistent with a lack of first coordination sphere water molecules. Despite this the gadolinium coiled coil, the first to be reported, displays promising magnetic resonance contrast capabilities.


Assuntos
Meios de Contraste/química , Elementos da Série dos Lantanídeos/química , Imageamento por Ressonância Magnética , Compostos Organometálicos/química , Peptídeos/química , Meios de Contraste/síntese química , Luminescência , Modelos Moleculares , Compostos Organometálicos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...