Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(17)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38748003

RESUMO

In this work, we investigate how exploiting symmetry when creating and modifying structural models may speed up global atomistic structure optimization. We propose a search strategy in which models start from high symmetry configurations and then gradually evolve into lower symmetry models. The algorithm is named cascading symmetry search and is shown to be highly efficient for a number of known surface reconstructions. We use our method for the sulfur-induced Cu (111) (43×43) surface reconstruction for which we identify a new highly stable structure that conforms with the experimental evidence.

2.
J Chem Phys ; 157(17): 174115, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36347689

RESUMO

We describe a local surrogate model for use in conjunction with global structure search methods. The model follows the Gaussian approximation potential formalism and is based on the smooth overlap of atomic positions descriptor with sparsification in terms of a reduced number of local environments using mini-batch k-means. The model is implemented in the Atomistic Global Optimization X framework and used as a partial replacement of the local relaxations in basin hopping structure search. The approach is shown to be robust for a wide range of atomistic systems, including molecules, nanoparticles, surface supported clusters, and surface thin films. The benefits in a structure search context of a local surrogate model are demonstrated. This includes the ability to benefit from transfer learning from smaller systems as well as the possibility to perform concurrent multi-stoichiometry searches.

3.
Nanoscale ; 13(24): 10771-10779, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34132718

RESUMO

Recently, the discovery of the quasiperiodic order in ultra-thin perovskite films reinvigorated the field of 2-dimensional oxides on metals, and raised the question of the reasons behind the emergence of the quasiperiodic order in these systems. The effect of size-mismatch between the two separate systems has been widely reported as a key factor governing the formation of new oxide structures on metals. Herein, we show that electronic effects can play an important role as well. To this end, the structural, thermodynamic, electronic and magnetic properties of freestanding two-dimensional oxide quasicrystalline approximants and their characteristics when deposited over metallic substrates are systematically investigated to unveil the structure-property relationships within the series. Our thermodynamic approach suggests that the formation of these aperiodic systems is likely for a wide range of compositions. In addition, the magnetic properties and work functions of the thin films can be controlled by tuning their chemical composition. This work provides well-founded general insights into the driving forces behind the emergence of the quasiperiodic order in ternary oxides grown on elemental metals and offers guidelines for the discovery of new oxide quasicrystalline ultra-thin films with interesting physical properties.

4.
J Phys Chem Lett ; 11(18): 7672-7678, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32787294

RESUMO

The tunability offered by alloying different elements is useful to design catalysts with greater activity, selectivity, and stability than single metals. By comparing the Pd(111) and PdZn(111) model catalysts for CO2 hydrogenation to methanol, we show that intermetallic alloying is a possible strategy to control the reaction pathway from the tuning of adsorbate binding energies. In comparison to Pd, the strong electron-donor character of PdZn weakens the adsorption of carbon-bound species and strengthens the binding of oxygen-bound species. As a consequence, the first step of CO2 hydrogenation more likely leads to the formate intermediate on PdZn, while the carboxyl intermediate is preferentially formed on Pd. This results in the opening of a pathway from carbon dioxide to methanol on PdZn similar to that previously proposed on Cu. These findings rationalize the superiority of PdZn over Pd for CO2 conversion into methanol and suggest guidance for designing more efficient catalysts by promoting the proper reaction intermediates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...