Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38869008

RESUMO

Cofilin, an actin-severing protein, plays key roles in muscle sarcomere addition and maintenance. Our previous work found that Drosophila cofilin (DmCFL) knockdown in muscle causes progressive deterioration of muscle structure and function and produces features seen in nemaline myopathy caused by cofilin mutations. We hypothesized that disruption of actin cytoskeleton dynamics by DmCFL knockdown would impact other aspects of muscle development, and, thus, conducted an RNA-sequencing analysis that unexpectedly revealed upregulated expression of numerous neuromuscular junction (NMJ) genes. We found that DmCFL is enriched in the muscle postsynaptic compartment and that DmCFL muscle knockdown causes F-actin disorganization in this subcellular domain prior to the sarcomere defects observed later in development. Despite NMJ gene expression changes, we found no significant changes in gross presynaptic Bruchpilot active zones or total postsynaptic glutamate receptor levels. However, DmCFL knockdown resulted in mislocalization of GluRIIA class glutamate receptors in more deteriorated muscles and strongly impaired NMJ transmission strength. These findings expand our understanding of the roles of cofilin in muscle to include NMJ structural development and suggest that NMJ defects may contribute to the pathophysiology of nemaline myopathy.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Junção Neuromuscular , Transmissão Sináptica , Animais , Junção Neuromuscular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Fatores de Despolimerização de Actina/metabolismo , Fatores de Despolimerização de Actina/genética , Actinas/metabolismo , Sarcômeros/metabolismo , Técnicas de Silenciamento de Genes , Citoesqueleto de Actina/metabolismo , Miopatias da Nemalina/metabolismo , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia
2.
Front Cell Dev Biol ; 12: 1416720, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895159

RESUMO

[This corrects the article DOI: 10.3389/fcell.2022.934662.].

3.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38748250

RESUMO

Dynamic presynaptic actin remodeling drives structural and functional plasticity at synapses, but the underlying mechanisms remain largely unknown. Previous work has shown that actin regulation via Rac1 guanine exchange factor (GEF) Vav signaling restrains synaptic growth via bone morphogenetic protein (BMP)-induced receptor macropinocytosis and mediates synaptic potentiation via mobilization of reserve pool vesicles in presynaptic boutons. Here, we find that Gef26/PDZ-GEF and small GTPase Rap1 signaling couples the BMP-induced activation of Abelson kinase to this Vav-mediated macropinocytosis. Moreover, we find that adenylate cyclase Rutabaga (Rut) signaling via exchange protein activated by cAMP (Epac) drives the mobilization of reserve pool vesicles during post-tetanic potentiation (PTP). We discover that Rap1 couples activation of Rut-cAMP-Epac signaling to Vav-mediated synaptic potentiation. These findings indicate that Rap1 acts as an essential, convergent node for Abelson kinase and cAMP signaling to mediate BMP-induced structural plasticity and activity-induced functional plasticity via Vav-dependent regulation of the presynaptic actin cytoskeleton.


Assuntos
Plasticidade Neuronal , Terminações Pré-Sinápticas , Transdução de Sinais , Animais , Citoesqueleto de Actina/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Terminações Pré-Sinápticas/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , Complexo Shelterina/metabolismo , Pinocitose , Drosophila
4.
Cell Signal ; 120: 111224, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38740233

RESUMO

Early-life critical periods allow initial sensory experience to remodel brain circuitry so that synaptic connectivity can be optimized to environmental input. In the Drosophila juvenile brain, olfactory sensory neuron (OSN) synaptic glomeruli are pruned by glial phagocytosis in dose-dependent response to early odor experience during a well-defined critical period. Extracellular signal-regulated kinase (ERK) separation of phases-based activity reporter of kinase (SPARK) biosensors reveal experience-dependent signaling in glia during this critical period. Glial ERK-SPARK signaling is depressed by removal of Draper receptors orchestrating glial phagocytosis. Cell-targeted genetic knockdown of glial ERK signaling reduces olfactory experience-dependent glial pruning of the OSN synaptic glomeruli in a dose-dependent mechanism. Noonan Syndrome is caused by gain-of-function mutations in protein tyrosine phosphatase non-receptor type 11 (PTPN11) inhibiting ERK signaling, and a glial-targeted patient-derived mutation increases experience-dependent glial ERK signaling and impairs experience-dependent glial pruning of the OSN synaptic glomeruli. We conclude that critical period experience drives glial ERK signaling that is required for dose-dependent pruning of brain synaptic glomeruli, and that altered glial ERK signaling impairs this critical period mechanism in a Noonan Syndrome disease model.


Assuntos
Proteínas de Drosophila , Sistema de Sinalização das MAP Quinases , Neuroglia , Animais , Neuroglia/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Sinapses/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fagocitose
5.
Sci Rep ; 14(1): 9110, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643298

RESUMO

Critical periods are temporally-restricted, early-life windows when sensory experience remodels synaptic connectivity to optimize environmental input. In the Drosophila juvenile brain, critical period experience drives synapse elimination, which is transiently reversible. Within olfactory sensory neuron (OSN) classes synapsing onto single projection neurons extending to brain learning/memory centers, we find glia mediate experience-dependent pruning of OSN synaptic glomeruli downstream of critical period odorant exposure. We find glial projections infiltrate brain neuropil in response to critical period experience, and use Draper (MEGF10) engulfment receptors to prune synaptic glomeruli. Downstream, we find antagonistic Basket (JNK) and Puckered (DUSP) signaling is required for the experience-dependent translocation of activated Basket into glial nuclei. Dependent on this signaling, we find critical period experience drives expression of the F-actin linking signaling scaffold Cheerio (FLNA), which is absolutely essential for the synaptic glomeruli pruning. We find Cheerio mediates experience-dependent regulation of the glial F-actin cytoskeleton for critical period remodeling. These results define a sequential pathway for experience-dependent brain synaptic glomeruli pruning in a strictly-defined critical period; input experience drives neuropil infiltration of glial projections, Draper/MEGF10 receptors activate a Basket/JNK signaling cascade for transcriptional activation, and Cheerio/FLNA induction regulates the glial actin cytoskeleton to mediate targeted synapse phagocytosis.


Assuntos
Proteínas de Drosophila , Neurônios Receptores Olfatórios , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Transdução de Sinais , Encéfalo/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Neuroglia/metabolismo
6.
J Vis Exp ; (205)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497653

RESUMO

Early-life olfactory sensory experience induces dramatic synaptic glomeruli remodeling in the Drosophila juvenile brain, which is experientially dose-dependent, temporally restricted, and transiently reversible only in a short, well-defined critical period. The directionality of brain circuit synaptic connectivity remodeling is determined by the specific odorant acting on the respondent receptor class of olfactory sensory neurons. In general, each neuron class expresses only a single odorant receptor and innervates a single olfactory synaptic glomerulus. In the Drosophila genetic model, the full array of olfactory glomeruli has been precisely mapped by odorant responsiveness and behavioral output. Ethyl butyrate (EB) odorant activates Or42a receptor neurons innervating the VM7 glomerulus. During the early-life critical period, EB experience drives dose-dependent synapse elimination in the Or42a olfactory sensory neurons. Timed periods of dosed EB odorant exposure allow investigation of experience-dependent circuit connectivity pruning in juvenile brain. Confocal microscopy imaging of antennal lobe synaptic glomeruli is done with Or42a receptor-driven transgenic markers that provide quantification of synapse number and innervation volume. The sophisticated Drosophila genetic toolkit enables the systematic dissection of the cellular and molecular mechanisms mediating brain circuit remodeling.


Assuntos
Butiratos , Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Encéfalo , Bulbo Olfatório , Receptores Odorantes/genética , Drosophila
7.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38471782

RESUMO

Cytoplasmic protein tyrosine phosphatase nonreceptor type 11 (PTPN11) and Drosophila homolog Corkscrew (Csw) regulate the mitogen-activated protein kinase (MAPK) pathway via a conserved autoinhibitory mechanism. Disease-causing loss-of-function (LoF) and gain-of-function (GoF) mutations both disrupt this autoinhibition to potentiate MAPK signaling. At the Drosophila neuromuscular junction glutamatergic synapse, LoF/GoF mutations elevate transmission strength and reduce activity-dependent synaptic depression. In both sexes of LoF/GoF mutations, the synaptic vesicles (SV)-colocalized synapsin phosphoprotein tether is highly elevated at rest, but quickly reduced with stimulation, suggesting a larger SV reserve pool with greatly heightened activity-dependent recruitment. Transmission electron microscopy of mutants reveals an elevated number of SVs clustered at the presynaptic active zones, suggesting that the increased vesicle availability is causative for the elevated neurotransmission. Direct neuron-targeted extracellular signal-regulated kinase (ERK) GoF phenocopies both increased local presynaptic MAPK/ERK signaling and synaptic transmission strength in mutants, confirming the presynaptic regulatory mechanism. Synapsin loss blocks this elevation in both presynaptic PTPN11 and ERK mutants. However, csw null mutants cannot be rescued by wild-type Csw in neurons: neurotransmission is only rescued by expressing Csw in both neurons and glia simultaneously. Nevertheless, targeted LoF/GoF mutations in either neurons or glia alone recapitulate the elevated neurotransmission. Thus, PTPN11/Csw mutations in either cell type are sufficient to upregulate presynaptic function, but a dual requirement in neurons and glia is necessary for neurotransmission. Taken together, we conclude that PTPN11/Csw acts in both neurons and glia, with LoF and GoF similarly upregulating MAPK/ERK signaling to enhance presynaptic Synapsin-mediated SV trafficking.


Assuntos
Proteínas de Drosophila , Sistema de Sinalização das MAP Quinases , Neuroglia , Neurônios , Terminações Pré-Sinápticas , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Sinapsinas , Transmissão Sináptica , Vesículas Sinápticas , Animais , Feminino , Masculino , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Mutação , Neuroglia/metabolismo , Neuroglia/fisiologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Sinapsinas/metabolismo , Sinapsinas/genética , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo
8.
J Neurosci ; 44(12)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38267256

RESUMO

Imaging brain learning and memory circuit kinase signaling is a monumental challenge. The separation of phases-based activity reporter of kinase (SPARK) biosensors allow circuit-localized studies of multiple interactive kinases in vivo, including protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) signaling. In the precisely-mapped Drosophila brain learning/memory circuit, we find PKA and ERK signaling differentially enriched in distinct Kenyon cell connectivity nodes. We discover that potentiating normal circuit activity induces circuit-localized PKA and ERK signaling, expanding kinase function within new presynaptic and postsynaptic domains. Activity-induced PKA signaling shows extensive overlap with previously selective ERK signaling nodes, while activity-induced ERK signaling arises in new connectivity nodes. We find targeted synaptic transmission blockade in Kenyon cells elevates circuit-localized ERK induction in Kenyon cells with normally high baseline ERK signaling, suggesting lateral and feedback inhibition. We discover overexpression of the pathway-linking Meng-Po (human SBK1) serine/threonine kinase to improve learning acquisition and memory consolidation results in dramatically heightened PKA and ERK signaling in separable Kenyon cell circuit connectivity nodes, revealing both synchronized and untapped signaling potential. Finally, we find that a mechanically-induced epileptic seizure model (easily shocked "bang-sensitive" mutants) has strongly elevated, circuit-localized PKA and ERK signaling. Both sexes were used in all experiments, except for the hemizygous male-only seizure model. Hyperexcitable, learning-enhanced, and epileptic seizure models have comparably elevated interactive kinase signaling, suggesting a common basis of use-dependent induction. We conclude that PKA and ERK signaling modulation is locally coordinated in use-dependent spatial circuit dynamics underlying seizure susceptibility linked to learning/memory potential.


Assuntos
Aprendizagem , Transdução de Sinais , Animais , Feminino , Masculino , Humanos , Aprendizagem/fisiologia , Transdução de Sinais/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Encéfalo/metabolismo , Drosophila/metabolismo , Convulsões
9.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38045306

RESUMO

Cofilin, an actin severing protein, plays critical roles in muscle sarcomere addition and maintenance. Our previous work has shown Drosophila cofilin (DmCFL) knockdown causes progressive deterioration of muscle structure and function and produces features seen in nemaline myopathy (NM) caused by cofilin mutations. We hypothesized that disruption of actin cytoskeleton dynamics by DmCFL knockdown would impact other aspects of muscle development, and, thus, conducted an RNA sequencing analysis which unexpectedly revealed upregulated expression of numerous neuromuscular junction (NMJ) genes. We found that DmCFL is enriched in the muscle postsynaptic compartment and that DmCFL deficiency causes F-actin disorganization in this subcellular domain prior to the sarcomere defects observed later in development. Despite NMJ gene expression changes, we found no significant changes in gross presynaptic Bruchpilot active zones or total postsynaptic glutamate receptor levels. However, DmCFL knockdown results in mislocalization of glutamate receptors containing the GluRIIA subunit in more deteriorated muscles and neurotransmission strength is strongly impaired. These findings expand our understanding of cofilin's roles in muscle to include NMJ structural development and suggest that NMJ defects may contribute to NM pathophysiology.

10.
Dis Model Mech ; 16(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815467

RESUMO

The lipid storage disease Niemann Pick type C (NPC) causes neurodegeneration owing primarily to loss of NPC1. Here, we employed a Drosophila model to test links between glycosphingolipids, neurotransmission and neurodegeneration. We found that Npc1a nulls had elevated neurotransmission at the glutamatergic neuromuscular junction (NMJ), which was phenocopied in brainiac (brn) mutants, impairing mannosyl glucosylceramide (MacCer) glycosylation. Npc1a; brn double mutants had the same elevated synaptic transmission, suggesting that Npc1a and brn function within the same pathway. Glucosylceramide (GlcCer) synthase inhibition with miglustat prevented elevated neurotransmission in Npc1a and brn mutants, further suggesting epistasis. Synaptic MacCer did not accumulate in the NPC model, but GlcCer levels were increased, suggesting that GlcCer is responsible for the elevated synaptic transmission. Null Npc1a mutants had heightened neurodegeneration, but no significant motor neuron or glial cell death, indicating that dying cells are interneurons and that elevated neurotransmission precedes neurodegeneration. Glycosphingolipid synthesis mutants also had greatly heightened neurodegeneration, with similar neurodegeneration in Npc1a; brn double mutants, again suggesting that Npc1a and brn function in the same pathway. These findings indicate causal links between glycosphingolipid-dependent neurotransmission and neurodegeneration in this NPC disease model.


Assuntos
Drosophila , Glicoesfingolipídeos , Doenças Neurodegenerativas , Doença de Niemann-Pick Tipo C , Animais , Glucosilceramidas/metabolismo , Glicoesfingolipídeos/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Transmissão Sináptica , Modelos Animais de Doenças , Doenças Neurodegenerativas/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(12): e2216887120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36920921

RESUMO

In the developmental remodeling of brain circuits, neurons are removed by glial phagocytosis to optimize adult behavior. Fragile X mental retardation protein (FMRP) regulates neuron-to-glia signaling to drive glial phagocytosis for targeted neuron pruning. We find that FMRP acts in a mothers against decapentaplegic (Mad)-insulin receptor (InR)-protein kinase B (Akt) pathway to regulate pretaporter (Prtp) and amyloid precursor protein-like (APPL) signals directing this glial clearance. Neuronal RNAi of Drosophila fragile X mental retardation 1 (dfmr1) elevates mad transcript levels and increases pMad signaling. Neuronal dfmr1 and mad RNAi both elevate phospho-protein kinase B (pAkt) and delay neuron removal but cause opposite effects on InR expression. Genetically correcting pAkt levels in the mad RNAi background restores normal remodeling. Consistently, neuronal dfmr1 and mad RNAi both decrease Prtp levels, whereas neuronal InR and akt RNAi increase Prtp levels, indicating FMRP works with pMad and insulin signaling to tightly regulate Prtp signaling and thus control glial phagocytosis for correct circuit remodeling. Neuronal dfmr1 and mad and akt RNAi all decrease APPL levels, with the pathway signaling higher glial endolysosome activity for phagocytosis. These findings reveal a FMRP-dependent control pathway for neuron-to-glia communication in neuronal pruning, identifying potential molecular mechanisms for devising fragile X syndrome treatments.


Assuntos
Proteínas de Drosophila , Síndrome do Cromossomo X Frágil , Animais , Encéfalo/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
PLoS Biol ; 21(1): e3001969, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36701299

RESUMO

Noonan syndrome (NS) and NS with multiple lentigines (NSML) cognitive dysfunction are linked to SH2 domain-containing protein tyrosine phosphatase-2 (SHP2) gain-of-function (GoF) and loss-of-function (LoF), respectively. In Drosophila disease models, we find both SHP2 mutations from human patients and corkscrew (csw) homolog LoF/GoF elevate glutamatergic transmission. Cell-targeted RNAi and neurotransmitter release analyses reveal a presynaptic requirement. Consistently, all mutants exhibit reduced synaptic depression during high-frequency stimulation. Both LoF and GoF mutants also show impaired synaptic plasticity, including reduced facilitation, augmentation, and post-tetanic potentiation. NS/NSML diseases are characterized by elevated MAPK/ERK signaling, and drugs suppressing this signaling restore normal neurotransmission in mutants. Fragile X syndrome (FXS) is likewise characterized by elevated MAPK/ERK signaling. Fragile X Mental Retardation Protein (FMRP) binds csw mRNA and neuronal Csw protein is elevated in Drosophila fragile X mental retardation 1 (dfmr1) nulls. Moreover, phosphorylated ERK (pERK) is increased in dfmr1 and csw null presynaptic boutons. We find presynaptic pERK activation in response to stimulation is reduced in dfmr1 and csw nulls. Trans-heterozygous csw/+; dfmr1/+ recapitulate elevated presynaptic pERK activation and function, showing FMRP and Csw/SHP2 act within the same signaling pathway. Thus, a FMRP and SHP2 MAPK/ERK regulative mechanism controls basal and activity-dependent neurotransmission strength.


Assuntos
Proteínas de Drosophila , Proteína do X Frágil da Deficiência Intelectual , Animais , Humanos , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Transmissão Sináptica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo
13.
Front Cell Dev Biol ; 10: 934662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35880195

RESUMO

Drosophila models of neurological disease contribute tremendously to research progress due to the high conservation of human disease genes, the powerful and sophisticated genetic toolkit, and the rapid generation time. Fragile X syndrome (FXS) is the most prevalent heritable cause of intellectual disability and autism spectrum disorders, and the Drosophila FXS disease model has been critical for the genetic screening discovery of new intercellular secretion mechanisms. Here, we focus on the roles of three major signaling pathways: BMP, Wnt, and insulin-like peptides. We present Drosophila FXS model defects compared to mouse models in stem cells/embryos, the glutamatergic neuromuscular junction (NMJ) synapse model, and the developing adult brain. All three of these secreted signaling pathways are strikingly altered in FXS disease models, giving new mechanistic insights into impaired cellular outcomes and neurological phenotypes. Drosophila provides a powerful genetic screening platform to expand understanding of these secretory mechanisms and to test cellular roles in both peripheral and central nervous systems. The studies demonstrate the importance of exploring broad genetic interactions and unexpected regulatory mechanisms. We discuss a number of research avenues to pursue BMP, Wnt, and insulin signaling in future FXS investigations and the development of potential therapeutics.

14.
Development ; 149(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35394012

RESUMO

Both mRNA-binding Fragile X mental retardation protein (FMRP; Fmr1) and mRNA-binding Staufen regulate synaptic bouton formation and glutamate receptor (GluR) levels at the Drosophila neuromuscular junction (NMJ) glutamatergic synapse. Here, we tested whether these RNA-binding proteins act jointly in a common mechanism. We found that both dfmr1 and staufen mutants, and trans-heterozygous double mutants, displayed increased synaptic bouton formation and GluRIIA accumulation. With cell-targeted RNA interference, we showed a downstream Staufen role within postsynaptic muscle. With immunoprecipitation, we showed that FMRP binds staufen mRNA to stabilize postsynaptic transcripts. Staufen is known to target actin-binding, GluRIIA anchor Coracle, and we confirmed that Staufen binds to coracle mRNA. We found that FMRP and Staufen act sequentially to co-regulate postsynaptic Coracle expression, and showed that Coracle, in turn, controls GluRIIA levels and synaptic bouton development. Consistently, we found that dfmr1, staufen and coracle mutants elevate neurotransmission strength. We also identified that FMRP, Staufen and Coracle all suppress pMad activation, providing a trans-synaptic signaling linkage between postsynaptic GluRIIA levels and presynaptic bouton development. This work supports an FMRP-Staufen-Coracle-GluRIIA-pMad pathway regulating structural and functional synapse development.


Assuntos
Proteínas de Drosophila , Ácido Glutâmico , Animais , Drosophila , Proteínas de Drosophila/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Terminações Pré-Sinápticas , RNA Mensageiro/genética , Receptores de Glutamato/genética , Sinapses
15.
eNeuro ; 9(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35301221

RESUMO

Dynamic functional connectivity within brain circuits requires coordination of intercellular signaling and intracellular signal transduction. Critical roles for cAMP-dependent protein kinase A (PKA) signaling are well established in the Drosophila mushroom body (MB) learning and memory circuitry, but local PKA activity within this well-mapped neuronal network is uncharacterized. Here, we use an in vivo PKA activity sensor (PKA-SPARK) to test spatiotemporal regulatory requirements in the MB axon lobes. We find immature animals have little detectable PKA activity, whereas postcritical period adults show high field-selective activation primarily in just 3/16 defined output regions. In addition to the age-dependent PKA activity in distinct α'/ß' lobe nodes, females show sex-dependent elevation compared with males in these same restricted regions. Loss of neural cell body Fragile X mental retardation protein (FMRP) and Rugose [human Neurobeachin (NBEA)] suppresses localized PKA activity, whereas overexpression (OE) of MB lobe PKA-synergist Meng-Po (human SBK1) promotes PKA activity. Elevated Meng-Po subverts the PKA age-dependence, with elevated activity in immature animals, and spatial-restriction, with striking γ lobe activity. Testing circuit signaling requirements with temperature-sensitive shibire (human Dynamin) blockade, we find broadly expanded PKA activity within the MB lobes. Using transgenic tetanus toxin to block MB synaptic output, we find greatly heightened PKA activity in virtually all MB lobe fields, although the age-dependence is maintained. We conclude spatiotemporally restricted PKA activity signaling within this well-mapped learning/memory circuit is age-dependent and sex-dependent, driven by FMRP-Rugose pathway activation, temporally promoted by Meng-Po kinase function, and restricted by output neurotransmission providing network feedback.


Assuntos
Proteínas de Drosophila , Corpos Pedunculados , Animais , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retroalimentação , Feminino , Aprendizagem/fisiologia , Masculino
16.
J Cell Sci ; 134(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33973638

RESUMO

The synaptic cleft manifests enriched glycosylation, with structured glycans coordinating signaling between presynaptic and postsynaptic cells. Glycosylated signaling ligands orchestrating communication are tightly regulated by secreted glycan-binding lectins. Using the Drosophila neuromuscular junction (NMJ) as a model glutamatergic synapse, we identify a new Ca2+-binding (C-type) lectin, Lectin-galC1 (LGC1), which modulates presynaptic function and neurotransmission strength. We find that LGC1 is enriched in motoneuron presynaptic boutons and secreted into the NMJ extracellular synaptomatrix. We show that LGC1 limits locomotor peristalsis and coordinated movement speed, with a specific requirement for synaptic function, but not NMJ architecture. LGC1 controls neurotransmission strength by limiting presynaptic active zone (AZ) and postsynaptic glutamate receptor (GluR) aligned synapse number, reducing both spontaneous and stimulation-evoked synaptic vesicle (SV) release, and capping SV cycling rate. During high-frequency stimulation (HFS), mutants have faster synaptic depression and impaired recovery while replenishing depleted SV pools. Although LGC1 removal increases the number of glutamatergic synapses, we find that LGC1-null mutants exhibit decreased SV density within presynaptic boutons, particularly SV pools at presynaptic active zones. Thus, LGC1 regulates NMJ neurotransmission to modulate coordinated movement.


Assuntos
Proteínas de Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Lectinas Tipo C , Junção Neuromuscular/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/metabolismo
17.
Nat Commun ; 12(1): 1160, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608547

RESUMO

Glia engulf and phagocytose neurons during neural circuit developmental remodeling. Disrupting this pruning process contributes to Fragile X syndrome (FXS), a leading cause of intellectual disability and autism spectrum disorder in mammals. Utilizing a Drosophila FXS model central brain circuit, we identify two glial classes responsible for Draper-dependent elimination of developmentally transient PDF-Tri neurons. We find that neuronal Fragile X Mental Retardation Protein (FMRP) drives insulin receptor activation in glia, promotes glial Draper engulfment receptor expression, and negatively regulates membrane-molding ESCRT-III Shrub function during PDF-Tri neuron clearance during neurodevelopment in Drosophila. In this context, we demonstrate genetic interactions between FMRP and insulin receptor signaling, FMRP and Draper, and FMRP and Shrub in PDF-Tri neuron elimination. We show that FMRP is required within neurons, not glia, for glial engulfment, indicating FMRP-dependent neuron-to-glia signaling mediates neuronal clearance. We conclude neuronal FMRP drives glial insulin receptor activation to facilitate Draper- and Shrub-dependent neuronal clearance during neurodevelopment in Drosophila.


Assuntos
Proteínas de Drosophila/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neuroglia/metabolismo , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Receptor de Insulina/metabolismo , Animais , Antígenos CD , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Sistema Nervoso Central/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Neuropeptídeos/genética , Transdução de Sinais
18.
J Neurosci ; 41(6): 1218-1241, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33402421

RESUMO

Critical periods are developmental windows during which neural circuits effectively adapt to the new sensory environment. Animal models of fragile X syndrome (FXS), a common monogenic autism spectrum disorder (ASD), exhibit profound impairments of sensory experience-driven critical periods. However, it is not known whether the causative fragile X mental retardation protein (FMRP) acts uniformly across neurons, or instead manifests neuron-specific functions. Here, we use the genetically-tractable Drosophila brain antennal lobe (AL) olfactory circuit of both sexes to investigate neuron-specific FMRP roles in the odorant experience-dependent remodeling of the olfactory sensory neuron (OSN) innervation during an early-life critical period. We find targeted OSN class-specific FMRP RNAi impairs innervation remodeling within AL synaptic glomeruli, whereas global dfmr1 null mutants display relatively normal odorant-driven refinement. We find both OSN cell autonomous and cell non-autonomous FMRP functions mediate odorant experience-dependent remodeling, with AL circuit FMRP imbalance causing defects in overall glomerulus innervation refinement. We find OSN class-specific FMRP levels bidirectionally regulate critical period remodeling, with odorant experience selectively controlling OSN synaptic terminals in AL glomeruli. We find OSN class-specific FMRP loss impairs critical period remodeling by disrupting responses to lateral modulation from other odorant-responsive OSNs mediating overall AL gain control. We find that silencing glutamatergic AL interneurons reduces OSN remodeling, while conversely, interfering with the OSN class-specific GABAA signaling enhances remodeling. These findings reveal control of OSN synaptic remodeling by FMRP with neuron-specific circuit functions, and indicate how neural circuitry can compensate for global FMRP loss to reinstate normal critical period brain circuit remodeling.SIGNIFICANCE STATEMENT Fragile X syndrome (FXS), the leading monogenic cause of intellectual disability and autism spectrum disorder (ASD), manifests severe neurodevelopmental delays. Likewise, FXS disease models display disrupted neurodevelopmental critical periods. In the well-mapped Drosophila olfactory circuit model, perturbing the causative fragile X mental retardation protein (FMRP) within a single olfactory sensory neuron (OSN) class impairs odorant-dependent remodeling during an early-life critical period. Importantly, this impairment requires activation of other OSNs, and the olfactory circuit can compensate when FMRP is removed from all OSNs. Understanding the neuron-specific FMRP requirements within a developing neural circuit, as well as the FMRP loss compensation mechanisms, should help us engineer FXS treatments. This work suggests FXS treatments could use homeostatic mechanisms to alleviate circuit-level deficits.


Assuntos
Período Crítico Psicológico , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Córtex Olfatório/crescimento & desenvolvimento , Córtex Olfatório/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/química , Neurônios/efeitos dos fármacos , Odorantes , Bulbo Olfatório/química , Bulbo Olfatório/metabolismo , Córtex Olfatório/química , Neurônios Receptores Olfatórios/química , Neurônios Receptores Olfatórios/metabolismo , Optogenética/métodos
19.
Front Young Minds ; 82020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33304908
20.
Sci Rep ; 10(1): 17929, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087835

RESUMO

Honey bees are critical pollinators in ecosystems and agriculture, but their numbers have significantly declined. Declines in pollinator populations are thought to be due to multiple factors including habitat loss, climate change, increased vulnerability to disease and parasites, and pesticide use. Neonicotinoid pesticides are agonists of insect nicotinic cholinergic receptors, and sub-lethal exposures are linked to reduced honey bee hive survival. Honey bees are highly dependent on circadian clocks to regulate critical behaviors, such as foraging orientation and navigation, time-memory for food sources, sleep, and learning/memory processes. Because circadian clock neurons in insects receive light input through cholinergic signaling we tested for effects of neonicotinoids on honey bee circadian rhythms and sleep. Neonicotinoid ingestion by feeding over several days results in neonicotinoid accumulation in the bee brain, disrupts circadian rhythmicity in many individual bees, shifts the timing of behavioral circadian rhythms in bees that remain rhythmic, and impairs sleep. Neonicotinoids and light input act synergistically to disrupt bee circadian behavior, and neonicotinoids directly stimulate wake-promoting clock neurons in the fruit fly brain. Neonicotinoids disrupt honey bee circadian rhythms and sleep, likely by aberrant stimulation of clock neurons, to potentially impair honey bee navigation, time-memory, and social communication.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Comportamento Animal/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Ecossistema , Mel , Inseticidas/efeitos adversos , Neonicotinoides/efeitos adversos , Agonistas Nicotínicos/efeitos adversos , Praguicidas/efeitos adversos , Sono/efeitos dos fármacos , Animais , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Navegação Espacial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...