Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 583(16): 2647-53, 2009 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-19393652

RESUMO

Human misfolding diseases arise when proteins adopt non-native conformations that endow them with a tendency to aggregate and form intra- and/or extra-cellular deposits. Molecular chaperones, such as Hsp70 and TCP-1 Ring Complex (TRiC)/chaperonin containing TCP-1 (CCT), have been implicated as potent modulators of misfolding disease. These chaperones suppress toxicity of disease proteins and modify early events in the aggregation process in a cooperative and sequential manner reminiscent of their functions in de novo protein folding. Further understanding of the role of Hsp70, TRiC, and other chaperones in misfolding disease is likely to provide important insight into basic pathomechanistic principles that could potentially be exploited for therapeutic purposes.


Assuntos
Chaperoninas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Doenças Neurodegenerativas/metabolismo , Chaperonina com TCP-1 , Humanos , Dobramento de Proteína
2.
Biol Chem ; 389(12): 1455-66, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18844449

RESUMO

Abstract Several neurodegenerative diseases, including Kennedy's disease (KD), are associated with misfolding and aggregation of polyglutamine (polyQ)-expansion proteins. KD is caused by a polyQ-expansion in the androgen receptor (AR), a key player in male sexual differentiation. Interestingly, KD patients often show signs of mild-to-moderate androgen insensitivity syndrome (AIS) resulting from AR dysfunction. Here, we used the yeast Saccharomyces cerevisiae to investigate the molecular mechanism behind AIS in KD. Upon expression in yeast, polyQ-expanded N-terminal fragments of AR lacking the hormone binding domain caused a polyQ length-dependent growth defect. Interestingly, while AR fragments with 67 Q formed large, SDS-resistant inclusions, the most pronounced toxicity was observed upon expression of 102 Q fragments which accumulated exclusively as soluble oligomers in the 100-600 kDa range. Analysis using a hormone-dependent luciferase reporter revealed that full-length polyQ-expanded AR is fully functional in transactivation, but becomes inactivated in the presence of the corresponding polyQ-expanded N-terminal fragment. Furthermore, the greatest impairment of AR activity was observed upon interaction of full-length AR with soluble AR fragments. Taken together, our results suggest that soluble polyQ-containing fragments bind to full-length AR and inactivate it, thus providing insight into the mechanism behind AIS in KD and possibly other polyglutamine diseases, such as Huntington's disease.


Assuntos
Peptídeos/metabolismo , Receptores Androgênicos/genética , Ativação Transcricional/genética , Western Blotting , Atrofia Bulboespinal Ligada ao X/genética , Atrofia Bulboespinal Ligada ao X/metabolismo , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Humanos , Imunoprecipitação , Indicadores e Reagentes , Luciferases/metabolismo , Microscopia de Fluorescência , Modelos Genéticos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Peptídeos/toxicidade , Plasmídeos/genética , Saccharomyces cerevisiae/genética , Frações Subcelulares/metabolismo , Ácido Tricloroacético
3.
Trends Cell Biol ; 18(1): 1-4, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18068368

RESUMO

Disruption of protein homeostasis in mitochondria elicits a cellular response, which upregulates mitochondrial chaperones and other factors that serve to remodel the mitochondrial-folding environment. In a recent study, Haynes and colleagues uncovered a novel signal transduction pathway underlying this process. The upstream mitochondrial component of this pathway is an orthologue of Escherichia coli ClpP, which functions in the bacterial heat-shock response. These findings suggest that molecular aspects of stress sensing might be conserved between bacteria and mitochondria.


Assuntos
Caenorhabditis elegans/fisiologia , Mitocôndrias/fisiologia , Dobramento de Proteína , Transdução de Sinais , Animais , Fenômenos Fisiológicos Bacterianos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
4.
Mol Cell Biol ; 27(13): 4664-73, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17452441

RESUMO

The N-terminal and C-terminal domains of mitochondrially synthesized cytochrome c oxidase subunit II, Cox2, are translocated through the inner membrane to the intermembrane space (IMS). We investigated the distinct mechanisms of N-tail and C-tail export by analysis of epitope-tagged Cox2 variants encoded in Saccharomyces cerevisiae mitochondrial DNA. Both the N and C termini of a truncated protein lacking the Cox2 C-terminal domain were translocated to the IMS via a pathway dependent upon the conserved translocase Oxa1. The topology of this Cox2 variant, accumulated at steady state, was largely but not completely unaffected in mutants lacking proteins required for export of the C-tail domain, Cox18 and Mss2. C-tail export was blocked by truncation of the last 40 residues from the C-tail domain, indicating that sequence and/or structural features of this domain are required for its translocation. Mss2, a peripheral protein bound to the inner surface of the inner membrane, coimmunoprecipitated with full-length newly synthesized Cox2, whose leader peptide had already been cleaved in the IMS. Our data suggest that the C-tail domain is recognized posttranslationally by a specialized translocation apparatus after the N-tail has been translocated by Oxa1.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Complexo IV da Cadeia de Transporte de Elétrons/química , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Imunoprecipitação , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Termodinâmica
5.
J Biol Chem ; 282(12): 9195-203, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17170113

RESUMO

Several neurodegenerative diseases, including Huntington disease (HD), are associated with aberrant folding and aggregation of polyglutamine (polyQ) expansion proteins. Here we established the zebrafish, Danio rerio, as a vertebrate HD model permitting the screening for chemical suppressors of polyQ aggregation and toxicity. Upon expression in zebrafish embryos, polyQ-expanded fragments of huntingtin (htt) accumulated in large SDS-insoluble inclusions, reproducing a key feature of HD pathology. Real time monitoring of inclusion formation in the living zebrafish indicated that inclusions grow by rapid incorporation of soluble htt species. Expression of mutant htt increased the frequency of embryos with abnormal morphology and the occurrence of apoptosis. Strikingly, apoptotic cells were largely devoid of visible aggregates, suggesting that soluble oligomeric precursors may instead be responsible for toxicity. As in nonvertebrate polyQ disease models, the molecular chaperones, Hsp40 and Hsp70, suppressed both polyQ aggregation and toxicity. Using the newly established zebrafish model, two compounds of the N'-benzylidene-benzohydrazide class directed against mammalian prion proved to be potent inhibitors of polyQ aggregation, consistent with a common structural mechanism of aggregation for prion and polyQ disease proteins.


Assuntos
Apoptose , Mutação , Peptídeos/química , Animais , Proteínas de Fluorescência Verde/química , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP70/química , Modelos Químicos , Modelos Moleculares , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Frações Subcelulares , Termodinâmica , Peixe-Zebra
6.
EMBO J ; 25(11): 2519-28, 2006 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-16688212

RESUMO

Hsp70 molecular chaperones function in protein folding in a manner dependent on regulation by co-chaperones. Hsp40s increase the low intrinsic ATPase activity of Hsp70, and nucleotide exchange factors (NEFs) remove ADP after ATP hydrolysis, enabling a new Hsp70 interaction cycle with non-native protein substrate. Here, we show that members of the Hsp70-related Hsp110 family cooperate with Hsp70 in protein folding in the eukaryotic cytosol. Mammalian Hsp110 and the yeast homologues Sse1p/2p catalyze efficient nucleotide exchange on Hsp70 and its orthologue in Saccharomyces cerevisiae, Ssa1p, respectively. Moreover, Sse1p has the same effect on Ssb1p, a ribosome-associated isoform of Hsp70 in yeast. Mutational analysis revealed that the N-terminal ATPase domain and the ultimate C-terminus of Sse1p are required for nucleotide exchange activity. The Hsp110 homologues significantly increase the rate and yield of Hsp70-mediated re-folding of thermally denatured firefly luciferase in vitro. Similarly, deletion of SSE1 causes a firefly luciferase folding defect in yeast cells under heat stress in vivo. Our data indicate that Hsp110 proteins are important components of the eukaryotic Hsp70 machinery of protein folding.


Assuntos
Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Análise Mutacional de DNA , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Chaperonas Moleculares/genética , Complexos Multiproteicos , Desnaturação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Hum Mol Genet ; 15(4): 555-68, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16407371

RESUMO

Spinocerebellar ataxia type 3 (SCA3), like other polyglutamine (polyQ) diseases, is characterized by the formation of intraneuronal inclusions, but the mechanism underlying their formation is poorly understood. Here, we tested the "toxic fragment hypothesis", which predicts that proteolytic production of polyQ-containing fragments from the full-length disease protein initiates the aggregation process associated with inclusion formation and cellular dysfunction. We demonstrate that the removal of the N-terminus of polyQ-expanded ataxin-3 (AT3) is required for aggregation in vitro and in vivo. Consistently, proteolytic cleavage of full-length, pathogenic AT3 initiates the formation of sodium dodecylsulfate-resistant aggregates in neuroblastoma cells. Although full-length AT3 does not readily aggregate on its own, it is susceptible to co-aggregation with polyQ-expanded AT3 fragments. Interestingly, interaction with soluble polyQ-elongated fragments causes a structural distortion of wild-type AT3 prior to the formation of stable co-aggregates. These results establish the critical role of C-terminal, proteolytic fragments of AT3 in the molecular pathomechanism of SCA3, in strong support of the toxic fragment hypothesis.


Assuntos
Corpos de Inclusão/metabolismo , Doença de Machado-Joseph/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos/genética , Animais , Ataxina-3 , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/patologia , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Camundongos , Proteínas do Tecido Nervoso/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/patologia , Proteínas Nucleares/genética , Estrutura Terciária de Proteína/genética , Proteínas Repressoras/genética , Deleção de Sequência/genética , Fatores de Transcrição
8.
Semin Cell Dev Biol ; 15(1): 17-29, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15036203

RESUMO

Human misfolding diseases result from the failure of proteins to reach their active state or from the accumulation of aberrantly folded proteins. The mechanisms by which molecular chaperones influence the development of these diseases is beginning to be understood. Mutations that compromise the activity of chaperones lead to several rare syndromes. In contrast, the more frequent amyloid-related neurodegenerative diseases are caused by a gain of toxic function of misfolded proteins. Toxicity in these disorders may result from an imbalance between normal chaperone capacity and production of dangerous protein species. Increased chaperone expression can suppress the neurotoxicity of these molecules, suggesting possible therapeutic strategies.


Assuntos
Doença/etiologia , Chaperonas Moleculares/fisiologia , Dobramento de Proteína , Proteínas/química , Amiloide/química , Amiloide/fisiologia , Chaperonina 60/genética , Chaperonina 60/fisiologia , Chaperoninas/fisiologia , Cisteína Endopeptidases/fisiologia , Citosol/fisiologia , Retículo Endoplasmático/fisiologia , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Proteínas de Ligação ao GTP , Chaperoninas do Grupo II , Proteínas de Choque Térmico HSP70/fisiologia , Proteínas de Choque Térmico HSP90/fisiologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Modelos Biológicos , Chaperonas Moleculares/genética , Complexos Multienzimáticos/fisiologia , Mutação , Complexo de Endopeptidases do Proteassoma , Proteínas/fisiologia , Ubiquitinas/fisiologia , alfa-Cristalinas/genética , alfa-Cristalinas/fisiologia
9.
EMBO J ; 22(21): 5951-61, 2003 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-14592991

RESUMO

The post-transcriptional role of Mss51p in mitochondrial gene expression is of great interest since MSS51 mutations suppress the respiratory defect caused by shy1 mutations. SHY1 is a Saccharomyces cerevisiae homolog of human SURF1, which when mutated causes a cytochrome oxidase assembly defect. We found that MSS51 is required for expression of the mitochondrial reporter gene ARG8(m) when it is inserted at the COX1 locus, but not when it is at COX2 or COX3. Unlike the COX1 mRNA-specific translational activator PET309, MSS51 has at least two targets in COX1 mRNA. MSS51 acts in the untranslated regions of the COX1 mRNA, since it was required to synthesize Arg8p when ARG8(m) completely replaced the COX1 codons. MSS51 also acts on a target specified by the COX1 coding region, since it was required to translate either COX1 or COX1:: ARG8(m) coding sequences from an ectopic COX2 locus. Mss51p was found to interact physically with newly synthesized Cox1p, suggesting that it could coordinate Cox1p synthesis with insertion into the inner membrane or cytochrome oxidase assembly.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Genes Fúngicos , Genes Reporter , Humanos , Mitocôndrias/metabolismo , Modelos Biológicos , Biossíntese de Proteínas , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transaminases/biossíntese , Transaminases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...