Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Biol Med (Maywood) ; 248(11): 936-947, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37208900

RESUMO

Cellulose fiber-reinforced composite scaffolds have recently become an interesting target for biomedical and tissue engineering (TE) applications. Cassava bagasse, a fibrous solid residue obtained after the extraction of cassava starch and soluble sugars, has been explored as a potential source of cellulose and has been successfully used to enhance the mechanical properties of gelatin scaffolds for TE purposes. This study assessed the cytocompatibility of the cassava microfiber-gelatin composite scaffold using human embryonic kidney cells (HEK 293) and a breast cancer cell line (MDA MB 231) under ISO 10993-5 standards. The viability of cells within the composite scaffold was analyzed through MTT assay. The growth of HEK 293, as well as the cell morphology, was not affected by the presence of cellulose within the composite, whereas the growth of breast cancer cells appeared to be inhibited with noticeable changes in cell morphology. These findings suggest that the presence of the cassava fiber in gelatin is not cytotoxic to HEK 293 cells. Thus, the composite is suitable for TE purposes when using normal cells. On the contrary, the presence of the fiber in gelatin elicited a cytotoxic effect in MDA MB 231 cells. Thus, the composite may not be considered for three-dimensional (3D) tumor cell studies requiring cancer cell growth. However, further studies are required to explore the use of the fiber from cassava bagasse for its anticancer cell properties, as observed in this study.


Assuntos
Neoplasias da Mama , Manihot , Humanos , Feminino , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Células HEK293 , Gelatina/química , Celulose/química
2.
Nanotechnol Sci Appl ; 10: 137-145, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29180854

RESUMO

Bacterial infections, especially by antimicrobial resistant (AMR) bacteria, are an increasing problem worldwide. AMR is especially a problem with health care-associated infections due to bacteria in hospital environments being easily transferred from patient to patient and from patient to environment, and thus, solutions to prevent bacterial transmission are needed. Hand washing is an effective tool for preventing bacterial infections, but other approaches such as nanoparticle-coated surfaces are also needed. In the current study, direct and indirect liquid flame spray (LFS) method was used to produce silver nanoparticle-coated surfaces. The antimicrobial properties of these nanoparticle surfaces were evaluated with the "touch test" method against Escherichia coli and Staphylococcus aureus. It was shown in this study that in glass samples one silver nanoparticle-coating cycle can inhibit E. coli growth, whereas at least two coating cycles were needed to inhibit S. aureus growth. Silver nanoparticle-coated polyethylene (PE) and PE terephthalate samples did not inhibit bacterial growth as effectively as glass samples: three nanoparticle-coating cycles were needed to inhibit E. coli growth, and more than 30 coating cycles were needed until S. aureus growth was inhibited. To conclude, with the LFS method, it is possible to produce nanostructured large-area antibacterial surfaces which show antibacterial effect against clinically relevant pathogens. Results indicate that the use of silver nanoparticle surfaces in hospital environments could prevent health care-associated infections in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...