Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Fungal Biol ; 128(4): 1868-1875, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876539

RESUMO

In the development of fungal based materials for applications in construction through to biomedical materials and fashion, understanding how to regulate and direct growth is key for gaining control over the form of material generated. Here, we show how simple 'chemical food' cues can be used to manipulate the growth of fungal networks by taking Aspergillus niger as an exemplar species. Chemotrophic responses towards a range of nitrogen and carbon containing biomolecules including amino acids, sugars and sugar alcohols were quantified in terms of chemotrophic index (CI) under a range of basal media compositions (low and high concentrations of N and C sources). Growth of filamentous networks was followed using fluorescence microscopy at single time points and during growth by an AI analytical approach to explore chemo sensing behaviour of the fungus when exposed to pairs (C-C, C-N, N-N) of biomolecules simultaneously. Data suggests that the directive growth of A. niger can be controlled towards simple biomolecules with CI values giving a good approximation for expected growth under a range of growth conditions. This is a first step towards identifying conditions for researcher-led directed growth of hyphae to make mycelial mats with tuneable morphological, physicochemical, and mechanical characteristics.


Assuntos
Aspergillus niger , Meios de Cultura , Hifas , Nitrogênio , Aspergillus niger/crescimento & desenvolvimento , Aspergillus niger/metabolismo , Hifas/crescimento & desenvolvimento , Meios de Cultura/química , Nitrogênio/metabolismo , Carbono/metabolismo , Aminoácidos/metabolismo , Microscopia de Fluorescência
2.
MycoKeys ; 102: 285-299, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463695

RESUMO

Members of the lichen-forming fungal genus Oxneriaria are known to occur in cold polar and high altitudinal environments. Two new species, Oxneriariacrittendenii and O.deosaiensis, are now described from the high altitude Deosai Plains, Pakistan, based on phenotypic, multigene phylogenetic and chemical evidence. Phenotypically, O.crittendenii is characterised by orbicular light-brown thalli 1.5-5 cm across, spot tests (K, C, KC) negative, apothecia pruinose, hymenium initially blue then dark orange in response to Lugol's solution. Oxneriariadeosaiensis is characterised by irregular areolate grey thalli 1.5-2 cm across, K test (light brown), KC test (dark brown), apothecia epruinose, hymenium initially blue then dark blue in response to Lugol's solution. Both species share the same characters of thalli with black margins and polarilocular ascospores. The closest previously reported species, O.pruinosa, differs from O.crittendenii and O.deosaiensis in having non-lobate margins, thin thalline exciple (45-80 µm thick), short asci (55-80 × 25-42 µm) and K positive (yellow) and KC negative tests and divergent DNA sequence in the ITS, LSU and mtSSU regions. The newly-described Oxneriaria species add to growing evidence of the Deosai Plains as a region of important arctic-alpine biodiversity.

3.
JID Innov ; 4(2): 100258, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38375189

RESUMO

Inhibition of IL-4/IL-13 signaling has dramatically improved the treatment of atopic dermatitis (AD). However, in many patients, clinical responses are slow to develop and remain modest. Indeed, some symptoms of AD are dependent on IL-31, which is only partially reduced by IL-4/IL-13 inhibition. Thus, there is an unmet need for AD treatments that concomitantly block IL-4/IL-13 and IL-31 pathways. We engineered NM26-2198, a bispecific tetravalent antibody designed to accomplish this task. In reporter cell lines, NM26-2198 concomitantly inhibited IL-4/IL-13 and IL-31 signaling with a potency comparable with that of the combination of an anti-IL-4Rα antibody (dupilumab) and an anti-IL-31 antibody (BMS-981164). In human PBMCs, NM26-2198 inhibited IL-4-induced upregulation of CD23, demonstrating functional binding to FcγRII (CD32). NM26-2198 also inhibited the secretion of the AD biomarker thymus and activation-regulated chemokine (TARC) in blood samples from healthy human donors. In male cynomolgus monkeys, NM26-2198 exhibited favorable pharmacokinetics and significantly inhibited IL-31-induced scratching at a dose of 30 mg/kg. In a repeat-dose, good laboratory practice toxicology study in cynomolgus monkeys, no adverse effects of NM26-2198 were observed at a weekly dose of 125 mg/kg. Together, these results justify the clinical investigation of NM26-2198 as a treatment for moderate-to-severe AD.

4.
NPJ Sci Food ; 8(1): 3, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191473

RESUMO

Penicillium roqueforti is used worldwide in the production of blue-veined cheese. The blue-green colour derives from pigmented spores formed by fungal growth. Using a combination of bioinformatics, targeted gene deletions, and heterologous gene expression we discovered that pigment formation was due to a DHN-melanin biosynthesis pathway. Systematic deletion of pathway genes altered the arising spore colour, yielding white to yellow-green to red-pink-brown phenotypes, demonstrating the potential to generate new coloured strains. There was no consistent impact on mycophenolic acid production as a result of pathway interruption although levels of roquefortine C were altered in some deletants. Importantly, levels of methyl-ketones associated with blue-cheese flavour were not impacted. UV-induced colour mutants, allowed in food production, were then generated. A range of colours were obtained and certain phenotypes were successfully mapped to pathway gene mutations. Selected colour mutants were subsequently used in cheese production and generated expected new colourations with no elevated mycotoxins, offering the exciting prospect of use in future cheese manufacture.

5.
Microbiol Spectr ; : e0507822, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37707447

RESUMO

Sporothrix brasiliensis is an emerging fungal pathogen frequently associated with zoonotic transmission of sporotrichosis by contaminated cats. Within 25 years, the disease has spread not only throughout Brazil but now to neighboring countries in Latin America. Thermo-dimorphism, melanin, glycans, adhesins, and secreted vesicles have been associated with the ability of Sporothrix species to cause disease in the mammalian host. Although certain virulence factors have been proposed as potential determinants for sporotrichosis, the scarcity of molecular tools for performing reverse genetics in Sporothrix has significantly impeded the dissection of mechanisms underlying the disease. Here, we demonstrate that PEG-mediated protoplast transformation is a powerful method for heterologous gene expression in S. brasiliensis, S. schenckii, and S. chilensis. Combined with CRISPR/Cas9 gene editing, this transformation protocol enabled the deletion of the putative DHN-melanin synthase gene pks1, which is a proposed virulence factor of Sporothrix species. To improve in locus integration of deletion constructs, we deleted the KU80 homolog that is critical for non-homologous end-joining DNA repair. The use of Δku80 strains from S. brasiliensis enhanced homologous-directed repair during transformation resulting in increased targeted gene deletion in combination with CRISPR/Cas9. In conclusion, our CRISPR/Cas9-based transformation protocol provides an efficient tool for targeted gene manipulation in Sporothrix species. IMPORTANCE Sporotrichosis caused by Sporothrix brasiliensis is a disease that requires long periods of treatment and is rapidly spreading across Latin America. The virulence of this fungus and the surge of atypical and more severe presentations of the disease raise the need for an understanding of the molecular mechanisms underlying sporotrichosis, as well as the development of better diagnostics and antifungal therapies. By developing molecular tools for accurate genetic manipulation in Sporothrix, this study addresses the paucity of reliable and reproducible tools for stable genetic engineering of Sporothrix species, which has represented a major obstacle for studying the virulence determinants and their roles in the establishment of sporotrichosis.

6.
Microbiol Spectr ; 11(4): e0082523, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37466453

RESUMO

Aspergillus fumigatus is an environmental mold that causes life-threatening respiratory infections in immunocompromised patients. The plateaued effectiveness of antifungal therapy and the increasing prevalence of triazole-resistant isolates have led to an urgent need to optimize and expand the current treatment options. For the transition of in vitro research to in vivo models in the time- and resource-consuming preclinical drug development pipeline, Galleria mellonella larvae have been introduced as a valuable in vivo screening intermediate. Despite the high potential of this model, the current readouts of fungal infections in G. mellonella are insensitive, irreproducible, or invasive. To optimize this model, we aimed for the longitudinal quantification of the A. fumigatus burden in G. mellonella using noninvasive bioluminescence imaging (BLI). Larvae were infected with A. fumigatus strains expressing a red-shifted firefly luciferase, and the substrate dosage was optimized for the longitudinal visualization of the fungal burden without affecting larval health. The resulting photon flux was successfully validated for fungal quantification against colony forming units (CFU) analyses, which revealed an increased dynamic range from BLI detection. Comparison of BLI to survival rates and health index scores additionally revealed improved sensitivity for the early discrimination of differences in fungal burdens as early as 1 day after infection. This was confirmed by the improved detection of treatment efficacy against triazole-susceptible and -resistant strains. In conclusion, we established a refined G. mellonella aspergillosis model that enables the noninvasive real-time quantification of A. fumigatus by BLI. This model provides a quick and reproducible in vivo system for the evaluation of treatment options and is in line with 3Rs recommendations. IMPORTANCE Triazole-resistant Aspergillus fumigatus strains are rapidly emerging, and resistant infections are difficult to treat, causing mortality rates of up to 88%. The recent WHO priority list underscores A. fumigatus as one of the most critical fungal pathogens for which innovative antifungal treatment should be (urgently) prioritized. Here, we deliver a Galleria mellonella model for triazole-susceptible and -resistant A. fumigatus infections combined with a statistically powerful quantitative, longitudinal readout of the A. fumigatus burden for optimized preclinical antifungal screening. G. mellonella larvae are a convenient invertebrate model for in vivo antifungal screenings, but so far, the model has been limited by variable and insensitive observational readouts. We show that bioluminescence imaging-based fungal burden quantification outperforms these readouts in reliability, sensitivity, and time to the detection of treatment effects in both triazole-susceptible and -resistant infections and can thus lead to better translatability from in vitro antifungal screening results to in vivo confirmation in mouse and human studies.


Assuntos
Antifúngicos , Mariposas , Humanos , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergillus fumigatus , Triazóis/farmacologia , Reprodutibilidade dos Testes , Farmacorresistência Fúngica , Mariposas/microbiologia , Larva/microbiologia , Testes de Sensibilidade Microbiana
7.
Oncoimmunology ; 12(1): 2233401, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456982

RESUMO

Mesothelin (MSLN) is an attractive immuno-oncology target, but the development of MSLN-targeting therapies has been impeded by tumor shedding of soluble MSLN (sMSLN), on-target off-tumor activity, and an immunosuppressive tumor microenvironment. We sought to engineer an antibody-based, MSLN-targeted T-cell engager (αMSLN/αCD3) with enhanced ability to discriminate high MSLN-expressing tumors from normal tissue, and activity in the presence of sMSLN. We also studied the in vivo antitumor efficacy of this molecule (NM28-2746) alone and in combination with the multifunctional checkpoint inhibitor/T-cell co-activator NM21-1480 (αPD-L1/α4-1BB). Cytotoxicity and T-cell activation induced by NM28-2746 were studied in co-cultures of peripheral blood mononuclear cells and cell lines exhibiting different levels of MSLN expression, including in the presence of soluble MSLN. Xenotransplant models of human pancreatic cancer were used to study the inhibition of tumor growth and stimulation of T-cell infiltration into tumors induced by NM28-2746 alone and in combination with NM21-1480. The bivalent αMSLN T-cell engager NM28-2746 potently induced T-cell activation and T-cell mediated cytotoxicity of high MSLN-expressing cells but had much lower potency against low MSLN-expressing cells. A monovalent counterpart of NM28-2746 had much lower ability to discriminate high MSLN-expressing from low MSLN-expressing cells. The bivalent molecule retained this discriminant ability in the presence of high concentrations of sMSLN. In xenograft models, NM28-2746 exhibited significant tumor suppressing activity, which was significantly enhanced by combination therapy with NM21-1480. NM28-2746, alone or in combination with NM21-1480, may overcome shortcomings of previous MSLN-targeted immuno-oncology drugs, exhibiting enhanced discrimination of high MSLN-expressing cell activity in the presence of sMSLN.


Assuntos
Antineoplásicos , Mesotelina , Humanos , Proteínas Ligadas por GPI/genética , Linfócitos T , Leucócitos Mononucleares/metabolismo , Antineoplásicos/farmacologia
8.
Front Microbiol ; 13: 896145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783442

RESUMO

All Aspergillus species form phialidic conidia (PC) when the mycelium is in contact with the air. These small, asexual spores are ideally suited for an airborne dissemination in the environment. Aspergillus terreus and a few closely related species from section Terrei can additionally generate accessory conidia (AC) that directly emerge from the hyphal surface. In this study, we have identified galactomannan as a major surface antigen on AC that is largely absent from the surface of PC. Galactomannan is homogeneously distributed over the entire surface of AC and even detectable on nascent AC present on the hyphal surface. In contrast, ß-glucans are only accessible in distinct structures that occur after separation of the conidia from the hyphal surface. During germination, AC show a very limited isotropic growth that has no detectable impact on the distribution of galactomannan. The AC of the strain used in this study germinate much faster than the corresponding PC, and they are more sensitive to desiccation than PC. During infection of murine J774 macrophages, AC are readily engulfed and trigger a strong tumor necrosis factor-alpha (TNFα) response. Both processes are not hampered by the presence of laminarin, which indicates that ß-glucans only play a minor role in these interactions. In the phagosome, we observed that galactomannan, but not ß-glucan, is released from the conidial surface and translocates to the host cell cytoplasm. AC persist in phagolysosomes, and many of them initiate germination within 24 h. In conclusion, we have identified galactomannan as a novel and major antigen on AC that clearly distinguishes them from PC. The role of this fungal-specific carbohydrate in the interactions with the immune system remains an open issue that needs to be addressed in future research.

9.
Fungal Biol Biotechnol ; 9(1): 8, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477441

RESUMO

BACKGROUND: Non-ribosomal peptide synthetase-like (NRPS-like) enzymes are highly enriched in fungal genomes and can be discriminated into reducing and non-reducing enzymes. Non-reducing NRPS-like enzymes possess a C-terminal thioesterase domain that catalyses the condensation of two identical aromatic α-keto acids under the formation of enzyme-specific substrate-interconnecting core structures such as terphenylquinones, furanones, butyrolactones or dioxolanones. Ascocoryne sarcoides produces large quantities of ascocorynin, which structurally resembles a terphenylquinone produced from the condensation of p-hydroxyphenylpyruvate and phenylpyruvate. Since the parallel use of two different substrates by a non-reducing NRPS-like enzyme appeared as highly unusual, we investigated the biosynthesis of ascocorynin in A. sarcoides. RESULTS: Here, we searched the genome of A. sarcoides for genes coding for non-reducing NRPS-like enzymes. A single candidate gene was identified that was termed acyN. Heterologous gene expression confirmed that AcyN is involved in ascocorynin production but only produces the non-hydroxylated precursor polyporic acid. Although acyN is embedded in an ascocorynin biosynthesis gene cluster, a gene encoding a monooxygenase required for the hydroxylation of polyporic acid was not present. Expression analyses of all monooxygenase-encoding genes from A. sarcoides identified a single candidate that showed the same expression pattern as acyN. Accordingly, heterologous co-expression of acyN and the monooxygenase gene resulted in the production of ascocorynin. Structural modelling of the monooxygenase suggests that the hydrophobic substrate polyporic acid enters the monooxygenase from a membrane facing entry site and is converted into the more hydrophilic product ascocorynin, which prevents its re-entry for a second round of hydroxylation. CONCLUSION: This study characterises the first naturally occurring polyporic acid synthetase from an ascomycete. It confirms the high substrate and product specificity of this non-reducing NRPS-like enzyme and highlights the requirement of a monooxygenase to produce the terphenylquinone ascocorynin.

10.
Microbes Infect ; 24(6-7): 104975, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35381358

RESUMO

The genus Paracoccidioides comprises the species complex causing paracoccidioidomycoses (PCM). These fungi are a serious public health problem due to the long-term drug therapy, follow-up treatment, and frequent sequelae generated by the infection, such as pulmonary fibrosis. In this sense, the objective of this work was to generate bioluminescent reporter strains of Paracoccidioides spp. harboring a thermostable, red-shifted luciferase gene under the control of different constitutive promoters. The strains were generated by the integration of a species-specific codon-optimized luciferase gene upon actin or enolase promoter's control. The insertion of the constructs in Paracoccidioides brasiliensis and Paracoccidioides lutzii yeast cells were performed through Agrobacterium tumefaciens-mediated transformation. The results demonstrated the presence of several transformants harboring the luciferase gene. These transformants were further confirmed by the expression of luciferase and by the presence of the hygromycin resistance gene. Moreover, the luciferase activity could be detected in in vitro bioluminescence assays and in vivo models of infection. In general, this work presents the methodology for the construction of bioluminescent strains of Paracoccidioides spp., highlighting potential promoters and proposing an in vivo model, in which those strains could be used for the systemic study of PCM.


Assuntos
Paracoccidioides , Paracoccidioidomicose , Actinas , Paracoccidioides/genética , Paracoccidioidomicose/microbiologia , Fosfopiruvato Hidratase
11.
Dis Model Mech ; 15(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35352801

RESUMO

Invasive pulmonary aspergillosis (IPA) caused by the mold Aspergillus fumigatus is one of the most important life-threatening infections in immunocompromised patients. The alarming increase of isolates resistant to the first-line recommended antifungal therapy urges more insights into triazole-resistant A. fumigatus infections. In this study, we systematically optimized a longitudinal multimodal imaging-compatible neutropenic mouse model of IPA. Reproducible rates of pulmonary infection were achieved through immunosuppression (sustained neutropenia) with 150 mg/kg cyclophosphamide at day -4, -1 and 2, and an orotracheal inoculation route in both sexes. Furthermore, increased sensitivity of in vivo bioluminescence imaging for fungal burden detection, as early as the day after infection, was achieved by optimizing luciferin dosing and through engineering isogenic red-shifted bioluminescent A. fumigatus strains, one wild type and two triazole-resistant mutants. We successfully tested appropriate and inappropriate antifungal treatment scenarios in vivo with our optimized multimodal imaging strategy, according to the in vitro susceptibility of our luminescent fungal strains. Therefore, we provide novel essential mouse models with sensitive imaging tools for investigating IPA development and therapy in triazole-susceptible and triazole-resistant scenarios.


Assuntos
Aspergilose , Aspergilose Pulmonar Invasiva , Animais , Aspergilose/diagnóstico por imagem , Aspergilose/tratamento farmacológico , Aspergillus fumigatus , Feminino , Humanos , Aspergilose Pulmonar Invasiva/diagnóstico por imagem , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Masculino , Camundongos , Imagem Multimodal , Triazóis/farmacologia , Triazóis/uso terapêutico
12.
J Biomol Struct Dyn ; 40(19): 9361-9373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34060981

RESUMO

Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in Latin America, caused by fungi of the genus Paracoccidioides. The treatment of PCM is complex, requiring a long treatment period, which often results in serious side effects. The aim of this study was to screen for inhibitors of a specific target of the fungus that is absent in humans. Methylcitrate synthase (MCS) is a unique enzyme of microorganisms and is responsible for the synthesis of methylcitrate at the beginning of the propionate degradation pathway. This pathway is essential for several microorganisms, since the accumulation of propionyl-CoA can impair virulence and prevent the development of the pathogen. We performed the modeling and molecular dynamics of the structure of Paracoccidioides lutzii MCS (PlMCS) and performed a virtual screening on 89,415 compounds against the active site of the enzyme. The compounds were selected according to the affinity and efficiency criteria of in vitro tests. Six compounds were able to inhibit the enzymatic activity of recombinant PlMCS but only the compound ZINC08964784 showed fungistatic and fungicidal activity against Paracoccidioides spp. cells. The analysis of the interaction profile of this compound with PlMCS showed its effectiveness in terms of specificity and stability when compared to the substrate (propionyl-CoA) of the enzyme. In addition, this compound did not show cytotoxicity in mammalian cells, with an excellent selectivity index. Our results suggest that the compound ZINC08964784 may become a promising alternative antifungal against Paracoccidioides spp. Communicated by Ramaswamy H. Sarma.


Assuntos
Paracoccidioides , Paracoccidioidomicose , Humanos , Animais , Paracoccidioidomicose/tratamento farmacológico , Paracoccidioidomicose/microbiologia , Citrato (si)-Sintase/farmacologia , Mamíferos
13.
Front Fungal Biol ; 3: 908343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746208

RESUMO

Aspergillus fumigatus is the main cause of life-threatening invasive aspergillosis. Despite the availability of various antifungals, therapy remains challenging and requires further studies. Accordingly, the clinical A. fumigatus isolate NIH4215 deriving from a fatal case of human pulmonary aspergillosis has frequently been used in drug efficacy studies. Unexpectedly, our initial attempts to generate a bioluminescent reporter of strain NIH4215 for in vivo drug efficacy studies failed, as NIH4215 was unable to grow on defined minimal medium. Subsequent analyses discovered a previously undescribed thiamine auxotrophy of strain NIH4215 and transformation with thiamine biosynthesis genes from A. fumigatus strain Af293 identified the nmt1 gene as cause of the thiamine auxotrophy. Sequencing of the defective nmt1 gene revealed the loss of a cysteine codon within an essential iron-binding motif. Subsequently, the wild-type nmt1 gene was successfully used to generate a bioluminescent reporter strain in NIH4215 by simultaneously deleting the akuB locus. The resulting bioluminescent ΔakuB strains showed a high frequency of homologous integration as confirmed by generation of pyrG and niaD deletion mutants. When tested in a Galleria mellonella infection model, neither thiamine auxotrophy nor the deletion of the akuB locus had a significant effect on virulence. However, besides thiamine auxotrophy, sectors with altered morphology and albino mutants frequently arose on colony edges of strain NIH4215 and its derivatives, and stable albino mutants were successfully isolated. A proposed increased mutation rate of NIH4215 was confirmed by screening for spontaneous occurrence of fluoorotic acid resistant mutants. Independent mutations in the pyrG and pyrE gene were identified in the fluoroorotic acid resistant NIH4215 isolates and the frequency of mutation was by at least one order of magnitude higher than that observed for the clinical A. fumigatus isolate CBS144.89. In summary, despite its virulence in animal models, strain NIH4215 is a thiamine auxotroph and prone to accumulate mutations. Our results suggest that thiamine biosynthesis is dispensable for host infection and mutation-prone strains such as NIH4215 could potentially facilitate the evolution of azole resistant strains as increasingly observed in the environment.

14.
Virulence ; 12(1): 2493-2508, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34546839

RESUMO

Invasive pulmonary aspergillosis (IPA) is a life-threatening fungal infection occurring mainly in immunocompromised patients. We recently identified IPA as an emerging co-infection with high mortality in critically ill, but otherwise immunocompetent influenza patients. The neuraminidase inhibitor oseltamivir is the current standard-of-care treatment in hospitalized influenza patients; however, its efficacy in influenza-associated pulmonary aspergillosis (IAPA) is not known. Therefore, we have established an imaging-supported double-hit mouse model to investigate the therapeutic effect of oseltamivir on the development of IAPA. Immunocompetent mice received intranasal instillation influenza A or PBS followed by orotracheal inoculation with Aspergillus fumigatus 4 days later. Oseltamivir treatment or placebo was started at day 0, day 2, or day 4. Daily monitoring included micro-computed tomography and bioluminescence imaging of pneumonia and fungal burden. Non-invasive biomarkers were complemented with imaging, molecular, immunological, and pathological analysis. Influenza virus-infected immunocompetent mice developed proven airway IPA upon co-infection with Aspergillus fumigatus, whereas non-influenza-infected mice fully cleared Aspergillus, confirming influenza as a risk factor for developing IPA. Longitudinal micro-CT showed pulmonary lesions after influenza infection worsening after Aspergillus co-infection, congruent with bioluminescence imaging and histology confirming Aspergillus pneumonia. Early oseltamivir treatment prevented severe influenza pneumonia and mitigated the development of IPA and associated mortality. A time-dependent treatment effect was consistently observed with imaging, molecular, and pathological analyses. Hence, our findings underscore the importance of initiating oseltamivir as soon as possible, to suppress influenza infection and mitigate the risk of potentially lethal IAPA disease.


Assuntos
Aspergilose , Coinfecção , Influenza Humana , Aspergilose Pulmonar Invasiva , Aspergilose Pulmonar , Animais , Aspergilose/tratamento farmacológico , Aspergillus , Aspergillus fumigatus , Coinfecção/tratamento farmacológico , Modelos Animais de Doenças , Humanos , Influenza Humana/complicações , Influenza Humana/tratamento farmacológico , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Camundongos , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Aspergilose Pulmonar/tratamento farmacológico , Microtomografia por Raio-X
15.
Front Immunol ; 12: 709695, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367172

RESUMO

Cryptococcus neoformans, an opportunistic fungal pathogen ubiquitously present in the environment, causes cryptococcal meningitis (CM) mainly in immunocompromised patients, such as AIDS patients. We aimed to identify disease-associated cryptococcal protein antigens targeted by the human humoral immune response. Therefore, we used sera from Colombian CM patients, with or without HIV infection, and from healthy individuals living in the same region. Serological analysis revealed increased titers of anti-cryptococcal IgG in HIV-negative CM patients, but not HIV-positive CM patients, compared to healthy controls. In contrast, titers of anti-cryptococcal IgM were not affected by CM. Furthermore, we detected pre-existing IgG and IgM antibodies even in sera from healthy individuals. The observed induction of anti-cryptococcal IgG but not IgM during CM was supported by analysis of sera from C. neoformans-infected mice. Stronger increase in IgG was found in wild type mice with high lung fungal burden compared to IL-4Rα-deficient mice showing low lung fungal burden. To identify the proteins targeted by human anti-cryptococcal IgG antibodies, we applied a quantitative 2D immunoproteome approach identifying cryptococcal protein spots preferentially recognized by sera from CM patients or healthy individuals followed by mass spectrometry analysis. Twenty-three cryptococcal proteins were recombinantly expressed and confirmed to be immunoreactive with human sera. Fourteen of them were newly described as immunoreactive proteins. Twelve proteins were classified as disease-associated antigens, based on significantly stronger immunoreactivity with sera from CM patients compared to healthy individuals. The proteins identified in our screen significantly expand the pool of cryptococcal proteins with potential for (i) development of novel anti-cryptococcal agents based on implications in cryptococcal virulence or survival, or (ii) development of an anti-cryptococcal vaccine, as several candidates lack homology to human proteins and are localized extracellularly. Furthermore, this study defines pre-existing anti-cryptococcal immunoreactivity in healthy individuals at a molecular level, identifying target antigens recognized by sera from healthy control persons.


Assuntos
Anticorpos Antifúngicos/imunologia , Cryptococcus neoformans/imunologia , Proteínas Fúngicas/imunologia , Imunoglobulina G/sangue , Meningite Criptocócica/imunologia , Adolescente , Adulto , Idoso , Animais , Anticorpos Antifúngicos/sangue , Antígenos de Fungos/imunologia , Criança , Feminino , Infecções por HIV/imunologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Adulto Jovem
16.
Microorganisms ; 9(8)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34442638

RESUMO

Cordyceps militaris is an entomopathogenic ascomycete, known primarily for infecting lepidopteran larval (caterpillars) and pupal hosts. Cordycepin, a secondary metabolite produced by this fungus has anti-inflammatory properties and other pharmacological activities. However, little is known about the biological role of this adenosine derivate and its stabilising compound pentostatin in the context of insect infection the life cycle of C. militaris. During repeated subcultivation under laboratory conditions a degeneration of C. militaris marked by decreasing levels of cordycepin production can occur. Here, using degenerated and parental control strains of an isolate of C. militaris, we found that lower cordycepin production coincides with the decline in the production of various other metabolites as well as the reduced expression of genes related to sexual development. Additionally, infection of Galleria mellonella (greater wax moth) caterpillars indicated that cordycepin inhibits the immune response in host haemocytes. Accordingly, the pathogenic response to the degenerated strain was reduced. These data indicate that there are simultaneous changes in sexual reproduction, secondary metabolite production, insect immunity and infection by C. militaris. This study may have implications for biological control of insect crop pests by fungi.

17.
Clin Microbiol Rev ; 34(4): e0031120, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34190571

RESUMO

Infections due to Aspergillus species are an acute threat to human health; members of the Aspergillus section Fumigati are the most frequently occurring agents, but depending on the local epidemiology, representatives of section Terrei or section Flavi are the second or third most important. Aspergillus terreus species complex is of great interest, as it is usually amphotericin B resistant and displays notable differences in immune interactions in comparison to Aspergillus fumigatus. The latest epidemiological surveys show an increased incidence of A. terreus as well as an expanding clinical spectrum (chronic infections) and new groups of at-risk patients being affected. Hallmarks of these non-Aspergillus fumigatus invasive mold infections are high potential for tissue invasion, dissemination, and possible morbidity due to mycotoxin production. We seek to review the microbiology, epidemiology, and pathogenesis of A. terreus species complex, address clinical characteristics, and highlight the underlying mechanisms of amphotericin B resistance. Selected topics will contrast key elements of A. terreus with A. fumigatus. We provide a comprehensive resource for clinicians dealing with fungal infections and researchers working on A. terreus pathogenesis, aiming to bridge the emerging translational knowledge and future therapeutic challenges on this opportunistic pathogen.


Assuntos
Aspergilose , Anfotericina B/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergilose/epidemiologia , Aspergillus , Aspergillus fumigatus , Humanos , Testes de Sensibilidade Microbiana
18.
mBio ; 12(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402536

RESUMO

The fungal zinc finger transcription factor NsdC is named after, and is best known for, its essential role in sexual reproduction (never in sexual development). In previous studies with Aspergillus nidulans, it was also shown to have roles in promotion of vegetative growth and suppression of asexual conidiation. In this study, the function of the nsdC homologue in the opportunistic human pathogen A. fumigatus was investigated. NsdC was again found to be essential for sexual development, with deletion of the nsdC gene in both MAT1-1 and MAT1-2 mating partners of a cross leading to complete loss of fertility. However, a functional copy of nsdC in one mating partner was sufficient to allow sexual reproduction. Deletion of nsdC also led to decreased vegetative growth and allowed conidiation in liquid cultures, again consistent with previous findings. However, NsdC in A. fumigatus was shown to have additional biological functions including response to calcium stress, correct organization of cell wall structure, and response to the cell wall stressors. Furthermore, virulence and host immune recognition were affected. Gene expression studies involving chromatin immunoprecipitation (ChIP) of RNA polymerase II (PolII) coupled to next-generation sequencing (Seq) revealed that deletion of nsdC resulted in changes in expression of over 620 genes under basal growth conditions. This demonstrated that this transcription factor mediates the activity of a wide variety of signaling and metabolic pathways and indicates that despite the naming of the gene, the promotion of sexual reproduction is just one among multiple roles of NsdC.IMPORTANCEAspergillus fumigatus is an opportunistic human fungal pathogen and the main causal agent of invasive aspergillosis, a life-threatening infection especially in immunocompromised patients. A. fumigatus can undergo both asexual and sexual reproductive cycles, and the regulation of both cycles involves several genes and pathways. Here, we have characterized one of these genetic determinants, the NsdC transcription factor, which was initially identified in a screen of transcription factor null mutants showing sensitivity when exposed to high concentrations of calcium. In addition to its known essential roles in sexual reproduction and control of growth rate and asexual reproduction, we have shown in the present study that A. fumigatus NsdC transcription factor has additional previously unrecognized biological functions including calcium tolerance, cell wall stress response, and correct cell wall organization and functions in virulence and host immune recognition. Our results indicate that NsdC can play novel additional biological functions not directly related to its role played during sexual and asexual processes.


Assuntos
Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Aspergilose/microbiologia , Aspergilose/patologia , Aspergillus fumigatus/patogenicidade , Parede Celular , Modelos Animais de Doenças , Feminino , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação , Fenótipo , Reprodução Assexuada , Transdução de Sinais , Transcriptoma , Virulência/genética , Fatores de Virulência/genética
19.
Oncoimmunology ; 10(1): 2004661, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35844969

RESUMO

Co-stimulatory 4-1BB receptors on tumor-infiltrating T cells are a compelling target for overcoming resistance to immune checkpoint inhibitors, but initial clinical studies of 4-1BB agonist mAbs were accompanied by liver toxicity. We sought to engineer a tri-specific antibody-based molecule that stimulates intratumoral 4-1BB and blocks PD-L1/PD-1 signaling without systemic toxicity and with clinically favorable pharmacokinetics. Recombinant fusion proteins were constructed using scMATCH3 technology and humanized antibody single-chain variable fragments against PD-L1, 4-1BB, and human serum albumin. Paratope affinities were optimized using single amino acid substitutions, leading to design of the drug candidate NM21-1480. Multiple in vitro experiments evaluated pharmacodynamic properties of NM21-1480, and syngeneic mouse tumor models assessed antitumor efficacy and safety of murine analogues. A GLP multiple-dose toxicology study evaluated its safety in non-human primates. NM21-1480 inhibited PD-L1/PD-1 signaling with a potency similar to avelumab, and it potently stimulated 4-1BB signaling only in the presence of PD-L1, while exhibiting an EC50 that was largely independent of PD-L1 density. NM21-1480 exhibited high efficacy for co-activation of pre-stimulated T cells and dendritic cells. In xenograft models in syngeneic mice, NM21-1480 induced tumor regression and tumor infiltration of T cells without causing systemic T-cell activation. A GLP toxicology study revealed no evidence of liver toxicity at doses up to 140 mg/kg, and pharmacokinetic studies in non-human primates suggested a plasma half-life in humans of up to 2 weeks. NM21-1480 has the potential to overcome checkpoint resistance by co-activating tumor-infiltrating lymphocytes without liver toxicity.


Assuntos
Antineoplásicos , Neoplasias , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/farmacologia , Antígeno B7-H1 , Humanos , Imunoterapia , Camundongos , Receptor de Morte Celular Programada 1
20.
J Fungi (Basel) ; 6(4)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143051

RESUMO

A sexual cycle in Aspergillus fumigatus was first described in 2009 with isolates from Dublin, Ireland. However, the extent to which worldwide isolates can undergo sexual reproduction has remained unclear. In this study a global collection of 131 isolates was established with a near 1:1 ratio of mating types. All isolates were crossed to MAT1-1 or MAT1-2 Irish strains, and a subset of isolates from different continents were crossed together. Ninety seven percent of isolates were found to produce cleistothecia with at least one mating partner, showing that sexual fertility is not limited to the Irish population but is a characteristic of global A. fumigatus. However, large variation was seen in numbers of cleistothecia produced per cross, suggesting differences in the possibility for genetic exchange between strains in nature. The majority of crosses produced ascospores with >50% germination rates, but with wide variation evident. A high temperature heat shock was required to induce ascospore germination. Finally, a new set of highly fertile MAT1-1 and MAT1-2 supermater strains were identified and pyrimidine auxotrophs generated for community use. Results provide insights into the potential for the A. fumigatus sexual cycle to generate genetic variation and allow gene flow of medically important traits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...