Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
J Dairy Sci ; 104(8): 8826-8834, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34053758

RESUMO

Silage treated with lactic acid bacteria inoculants has been reported to increase ruminal microbial biomass when tested in vitro. Therefore, we tested if alfalfa silage inoculated with Lactobacillus plantarum MTD-1 would improve ruminal N metabolism and increase milk production in high-producing dairy cows. Twenty-eight early lactation Holstein cows (8 ruminally cannulated) were blocked by DIM and milk production; animals were used in a double crossover design consisting of four 28-d periods. Animals in each block were randomly assigned to 2 treatments: a diet containing uninoculated alfalfa silage (control) and a diet containing alfalfa silage inoculated with L. plantarum MTD-1 (LP). Diets were formulated to contain 50% of alfalfa silage, 16% crude protein, and 25% neutral detergent fiber (dry matter basis). Milk production and dry matter intake were recorded in the last 14 d of each period. Milk samples were collected twice at both daily milkings on d 20, 21, 27, and 28 of each period. On d 22, omasal samples were collected from the cannulated animals over a period of 3 d to quantify ruminal digestibility and nutrient flows. Data were analyzed using mixed models of SAS 9.4 (SAS Institute). Compared to the control, cows receiving the LP treatment had greater milk production (40.4 vs. 39.6 kg/d) and lower milk urea nitrogen concentration (11.6 vs. 12.7 mg/dL), despite minor changes in energy-corrected milk. Milk lactose concentration was greater in the milk produced by cows fed the LP treatment, which reflected a tendency for increased milk lactose yield. Although milk true protein concentration was lower for cows in the LP treatment, milk true protein yield was the same on both control and LP treatments. Improvements in milk production of animals under the LP treatment were associated with greater organic matter truly digested in the rumen, especially ruminal neutral detergent fiber digestion. Minor changes were observed in total omasal microbial nonammonia N flow in cows receiving the LP treatment. Therefore, alfalfa silage treated with L. plantarum MTD-1 may improve ruminal fermentation and milk production; however, because of a lack of response in ruminal N metabolism, these changes did not result in greater energy-corrected milk in high-producing dairy cows.


Assuntos
Lactobacillales , Silagem , Animais , Bovinos , Dieta/veterinária , Digestão , Feminino , Fermentação , Lactação , Leite , Nitrogênio/metabolismo , Nutrientes , Rúmen/metabolismo , Silagem/análise , Zea mays
2.
J Dairy Sci ; 104(5): 5319-5331, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33663832

RESUMO

Eight lactating cows were fed 4 diets in which dietary crude protein (CP) was increased in steps of approximately 2 percentage units from 11 to 17% of DM by replacing high-moisture corn with soybean meal supplemented with rumen-protected Met to maintain a Lys:Met ratio of 3:1 in metabolizable protein. Trial design was a replicated 4 × 4 Latin square; experimental periods lasted 28 d, with data and sample collection being performed during wk 3 and 4 of each period. Digesta samples were collected from the rumen as well as the omasum to measure metabolite concentrations and ruminal outflow of N fractions using infusion of 15N-enriched ammonia to quantify microbial nonammonia N (NAN) and nonmicrobial NAN. Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc.). There were linear increases in the yields of milk and true protein and concentration of milk urea N, and a linear decrease in N efficiency, with increasing dietary CP. Apparent ruminal and total-tract N digestibility increased linearly with increasing dietary CP, but estimated true total-tract N digestibility was not affected. Apparent digestibility of the other macronutrients was not influenced by diet. Ruminal ammonia, total AA and peptides, and branched-chain VFA also increased linearly with dietary CP. The 15N enrichment of liquid- and particle-associated microbes linearly declined with increasing dietary CP due to decreasing 15N enrichment of the ammonia pool. Although no effect of dietary CP on nonmicrobial NAN flow was detected, total NAN flow increased linearly from 525 g/d at 11% CP to 637 g/d at 17% CP due to the linear increase in microbial NAN flow from 406 g/d at 11% CP to 482 g/d at 17% CP. Under the conditions of this study, when dietary CP was increased by adding soybean meal supplemented with rumen-protected Met, improved milk and protein yields were driven not by RUP supply but by increased ruminal outflow of microbial protein.


Assuntos
Lisina , Omaso , Animais , Bovinos , Dieta/veterinária , Proteínas Alimentares , Digestão , Feminino , Lactação , Metionina , Leite , Nitrogênio , Rúmen
3.
J Dairy Sci ; 103(7): 6218-6232, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32418692

RESUMO

Amino acids and glucose have been shown to regulate protein synthesis in the mammary gland through their effects on cellular signaling pathways. Acetate might also have an effect on protein synthesis via the AMP-activated kinase signaling pathway, because it is the main energy source for the mammary secretory cell. Thus, the objective of this experiment was to evaluate the effects of casein and energy-yielding nutrients (acetate and glucose), and their combination, on performance and mammary metabolism. Six multiparous Holstein cows, averaging 49 kg of milk/d, were used in a 6 × 6 Latin square design with 14-d periods. Cows were fed to 100% National Research Council requirements for metabolizable protein (MP) and energy (ME) for 9 d, after which they were feed-restricted for 5 d to 85% of their individual ad libitum intake and then abomasally infused with 1 of 6 treatments. Treatments were acetate (A), glucose (G), each at 5% of ad libitum ME intake, casein (C) at 15% of ad libitum MP intake, A + C, G + C, or a saline solution (negative control). Casein infused alone increased milk protein yield numerically, with 25% recovery of the infused casein in milk protein. Glucose infused alone increased milk and milk protein yield and promoted the highest efficiency of nitrogen utilization (37%), with an efficiency of MP use for milk protein of 58%. We discovered no effect of treatment on mammary plasma flow, and the increase in milk protein yield with glucose infusion was brought about by greater mammary AA clearance rate. Infusion of casein and glucose together further increased milk protein yield in an additive fashion, and 47% of the infused casein was recovered in milk protein. Acetate infused alone had no effect on milk protein yield but increased milk fat yield numerically, suggesting that the greater amount of acetate taken up by the mammary gland was used for milk fat synthesis. Infusion of acetate and casein together yielded responses similar to those of casein alone. In conclusion, glucose has a major effect on stimulating milk protein synthesis, and the mammary gland has the ability to increase its supply of nutrients to match its synthetic capacity.


Assuntos
Caseínas/administração & dosagem , Bovinos , Glucose/administração & dosagem , Glândulas Mamárias Animais/metabolismo , Proteínas do Leite/biossíntese , Abomaso/metabolismo , Acetatos/análise , Aminoácidos/metabolismo , Animais , Caseínas/metabolismo , Feminino , Hipersensibilidade Alimentar , Trato Gastrointestinal , Glucose/metabolismo , Lactação/fisiologia , Glândulas Mamárias Animais/efeitos dos fármacos , Leite/química , Proteínas do Leite/análise , Biossíntese de Proteínas
4.
J Dairy Sci ; 103(2): 1463-1471, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31837796

RESUMO

Previous research has demonstrated that feeding canola meal (CM) improves milk production and N utilization by lactating dairy cows when replacing solvent-extracted soybean meal (SBM). The objective of the present study was to evaluate whether CM would improve milk yield and components and N utilization, compared with SBM, at different ratios of alfalfa silage (AS) to corn silage (CS) fed to lactating dairy cows. Twenty-four multiparous Holstein cows averaging, at the beginning of the study (mean ± SD), 2.8 ± 0.9 parity, 684 ± 56 kg of BW, 102 ± 41 DIM, and 49 ± 4 kg milk/d, and 24 primiparous cows averaging (mean ± SD) 565 ± 46 kg of BW, 123 ± 30 DIM, and 40 ± 4 kg milk/d were blocked by parity and DIM. A cyclic changeover design with 4 replications of 2 blocks of treatments of 6 cows was used in an arrangement with 4 28-d periods. Dietary treatments were arranged in a 3 × 2 factorial design of 3 proportions of AS to CS as forage source (HAS = high AS, 50% AS to 10% CS; MAS = medium AS, 30% AS to 30% CS; LAS = low AS, 10% AS to 50% CS) and 2 protein supplements (CM vs. SBM). Diets were formulated to contain [dry matter (DM) basis]: 60% forage, 8 to 15% high-moisture corn, 2 to 5% soy hulls, 1.3% mineral-vitamin premix, 16% crude protein, and 31 to 33% NDF. Data from the last 2 weeks of each period were used to compute mean milk yield and composition, and efficiencies of feed conversion, for each cow in each period. Data for the other variables were collected during the last week of each period. All data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). Regardless of the forage source, replacing SBM with CM improved yields of milk, milk protein, and solids-not-fat. Moreover, milk urea nitrogen concentration and urinary excretion of total N (g/d) and urea N (% of total urinary N) decreased when CM replaced SBM. An interaction effect occurred between forage source and protein supplements for apparent total-tract digestibility, and, overall, this effect was due to small differences in ingredient and chemical compositions of the diets. In addition, these differences had a minor effect on cow performance. Yields of milk and milk components were greatest for cows fed 50% CS, intermediate for 30% CS, and lowest for 10% CS, indicating that, under the conditions of the present study, cows fed 50% CS in the diet (DM basis) had greater production compared with those fed 50% AS.


Assuntos
Brassica napus , Bovinos/fisiologia , Proteínas Alimentares/análise , Suplementos Nutricionais/análise , Leite/metabolismo , Silagem/análise , Animais , Dieta/veterinária , Feminino , Lactação , Medicago sativa , Leite/química , Proteínas do Leite/metabolismo , Nitrogênio/análise , Paridade , Gravidez , Glycine max , Ureia/análise , Zea mays
5.
J Dairy Sci ; 101(3): 2084-2095, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29290449

RESUMO

Corn silage, an important forage fed to dairy cows in the United States, is energy rich but protein poor. The objectives of this experiment were to investigate the effects on production of milk and milk components of feeding corn silage-based diets with 4 levels of dietary crude protein (CP) plus rumen-protected methionine (RPM). Thirty-six cows were blocked by days in milk into 9 squares and randomly assigned to 9 balanced 4 × 4 Latin squares with four 4-wk periods. All diets were formulated to contain, as a percent of dry matter (DM), 50% corn silage, 10% alfalfa silage, 4% soyhulls, 2.4% mineral-vitamin supplement, and 30% neutral detergent fiber. Supplemental RPM (Mepron, Evonik Corp., Kennesaw, GA) was added to all diets to maintain a Lys:Met ratio of 3.1 in digested AA. Ground high-moisture corn was reduced and soybean meal (SBM) plus RPM increased to give diets containing, on average, 11% CP (28% corn, 31% starch, 6% SBM, 4 g of RPM/d), 13% CP (23% corn, 29% starch, 10% SBM, 8 g of RPM/d), 15% CP (19% corn, 26% starch, 15% SBM, 10 g of RPM/d), and 17% CP (14% corn, 24% starch, 19% SBM, 12 g of RPM/d). Data from the last 14 d of each period were analyzed using the mixed procedures in SAS (SAS Institute Inc., Cary, NC). With the exception of milk fat and milk lactose content, we found no significant effects of diet on all production traits. We did note linear responses to dietary CP concentration for intake, production of milk and milk components, and MUN. Cows fed the 11% CP diet had reduced DM intake, lost weight, and yielded less milk and milk components. Mean separation indicated that only true protein yield was lower on 13% CP than on 17% dietary CP, but not different between 15 and 17% CP. This indicated no improvement in production of milk and milk components above 15% CP. Quadratic trends for yield of milk, energy-corrected milk, and true protein suggested that a dietary CP concentration greater than 15% may be necessary to maximize production or, alternately, that a plateau was reached and no further CP was required. Although diet influenced apparent digestibility of DM, organic matter, and neutral detergent fiber, digestibility did not increase linearly with dietary CP. However, we observed linear and quadratic effects of dietary CP on acid detergent fiber digestibility. As expected, we found a linear effect of dietary CP on apparent N digestibility and on fecal and urinary N excretion, but no effect of diet on estimated true N digestibility. Ruminal concentrations of ammonia, total AA, peptides, and branched-chain volatile fatty acids also increased linearly with dietary CP. Quadratic responses indicated that 14.0 to 14.8% CP was necessary to optimize digestion and energy utilization. Overall results indicated that, when RPM was added to increase Lys:Met to 3.1, 15% CP was adequate for lactating dairy cows fed corn silage diets supplemented with SBM and secreting about 40 kg of milk/d; N excretion was lower than at 17% CP but with no reduction in yield of milk and milk components.


Assuntos
Ração Animal/análise , Bovinos/fisiologia , Proteínas Alimentares/metabolismo , Glycine max/química , Lactação/efeitos dos fármacos , Metionina/metabolismo , Zea mays/química , Animais , Dieta/veterinária , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Feminino , Metionina/administração & dosagem , Leite/química , Leite/metabolismo , Distribuição Aleatória , Rúmen/fisiologia , Silagem/análise
6.
Animal ; 12(8): 1722-1734, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29151400

RESUMO

Ruminant livestock have the ability to produce high-quality human food from feedstuffs of little or no value for humans. Balanced essential amino acid composition of meat and milk from ruminants makes those protein sources valuable adjuncts to human diets. It is anticipated that there will be increasing demand for ruminant proteins in the future. Increasing productivity per animal dilutes out the nutritional and environmental costs of maintenance and rearing dairy animals up to production. A number of nutritional strategies improve production per animal such as ration balancing in smallholder operations and small grain supplements to ruminants fed high-forage diets. Greenhouse gas emission intensity is reduced by increased productivity per animal; recent research has developed at least one effective inhibitor of methane production in the rumen. There is widespread over-feeding of protein to dairy cattle; milk and component yields can be maintained, and sometimes even increased, at lower protein intake. Group feeding dairy cows according to production and feeding diets higher in rumen-undegraded protein can improve milk and protein yield. Supplementing rumen-protected essential amino acids will also improve N efficiency in some cases. Better N utilization reduces urinary N, which is the most environmentally unstable form of excretory N. Employing nutritional models to more accurately meet animal requirements improves nutrient efficiency. Although smallholder enterprises, which are concentrated in tropical and semi-tropical regions of developing countries, are subject to different economic pressures, nutritional biology is similar at all production levels. Rather than milk volume, nutritional strategies should maximize milk component yield, which is proportional to market value as well as food value when milk nutrients are consumed directly by farmers and their families. Moving away from Holsteins toward smaller breeds such as Jerseys, Holstein-Jersey crosses or locally adapted breeds (e.g. Vechur) would also reduce lactose production and improve metabolic, environmental and economic efficiencies. Forages containing condensed tannins or polyphenol oxidase enzymes have reduced rumen protein degradation; ruminants capture this protein more efficiently for meat and milk. Although these forages generally have lower yields and persistence, genetic modification would allow insertion of these traits into more widely cultivated forages. Ruminants will retain their niches because of their ability to produce valuable human food from low value feedstuffs. Employing these emerging strategies will allow improved productive efficiency of ruminants in both developing and developed countries.


Assuntos
Ração Animal , Proteínas Alimentares , Rúmen , Ruminantes , Animais , Bovinos , Dieta , Feminino , Humanos , Lactação , Leite , Melhoramento Vegetal , Rúmen/fisiologia , Ruminantes/fisiologia
7.
J Dairy Sci ; 101(1): 328-339, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29129322

RESUMO

Extrusion treated canola meal (TCM) was produced in an attempt to increase the rumen-undegraded protein fraction of canola meal (CM). The objective of this study was to evaluate the effects of replacing soybean meal (SBM) with CM or TCM on ruminal digestion, omasal nutrient flow, and performance in lactating dairy cows. To assess performance, 30 multiparous Holstein cows averaging (mean ± SD) 119 ± 23 d in milk and 44 ± 7 kg of milk/d and 15 primiparous cows averaging 121 ± 19 d in milk and 34 ± 6 kg of milk/d were blocked in a randomized complete block design with a 2-wk covariate period and 12-wk experimental period (experiment 1). Dietary ingredients differed only in protein supplements, which were SBM, CM, or TCM. All diets were formulated to contain (dry matter basis) 30% alfalfa silage, 30% corn silage, 4% soy hulls, 2.4% mineral-vitamin premix, and 16% CP. The SBM diet contained 25% high-moisture shelled corn and 8.6% SBM; the canola diets contained 22% high-moisture shelled corn and either 11.2% CM or 11.4% TCM. To assess ruminal digestion and omasal nutrient flow, 6 rumen-cannulated cows were blocked into 2 squares of 3 cows and randomly assigned within blocks to the same 3 dietary treatments as in experiment 1 in a replicated 3 × 3 Latin square design (experiment 2). Data were analyzed using the MIXED procedure of SAS (SAS Institute, Cary, NC). Orthogonal contrasts were used to compare effects of different protein supplements: SBM versus CM + TCM and CM versus TCM. In experiment 1, compared with SBM, apparent total-tract digestibilities of dry matter and nutrients were greater in cows fed both CM diets, and there was a tendency for nutrient digestibilities to be higher in cows fed CM compared with TCM. Diets did not affect milk yield and milk components; however, both canola diets decreased urinary urea N (% of total urinary N), fecal N (% of total N intake), and milk urea N concentration. In experiment 2, compared with SBM, both canola diets increased N intake and tended to increase rumen-degraded protein supply (kg/d) and N truly digested in the rumen (kg/d). Diets did not affect ruminal digestibility, efficiency of microbial protein synthesis, and rumen-undegraded protein flow among diets. Results from this experiment indicate that replacing SBM with CM or TCM in diets of lactating cows improved digestibility and may reduce environmental impact. Moreover, under the conditions of the present study, treating CM by extrusion did not improve CM utilization.


Assuntos
Ração Animal/análise , Brassicaceae , Bovinos/fisiologia , Dieta/veterinária , Glycine max/química , Rúmen/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Nitrogênio da Ureia Sanguínea , Proteínas Alimentares/administração & dosagem , Digestão , Feminino , Lactação , Leite/metabolismo , Omaso/metabolismo , Ureia/metabolismo
8.
J Dairy Sci ; 100(7): 5281-5292, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28456405

RESUMO

Previous research indicated that there were significant differences in rumen-undegradable protein (RUP) among canola meals (CM), which could influence the nutritional value of CM. The objectives of this study were to (1) evaluate the effects of feeding CM with different RUP contents on ruminal fermentation, nutrient digestion, and microbial growth using a dual-flow continuous culture system (experiment 1) and (2) evaluate ruminal gas production kinetics, in vitro organic matter (OM) digestibility, and methane (CH4) production of soybean meal (SBM) and CM with low or high RUP in the diet or as a sole ingredient using a gas production system (experiments 2 and 3). In experiment 1, diets were randomly assigned to 6 fermentors in a replicated 3 × 3 Latin square. The only ingredient that differed among diets was the protein supplement. The treatments were (1) solvent-extracted SBM, (2) low-RUP solvent-extracted CM (38% RUP as a percentage of crude protein), and (3) high-RUP solvent-extracted CM (50% RUP). Diets were prepared as 3 concentrate mixtures that were combined with 25% orchardgrass hay and 15% wheat straw (dry matter basis). Experiments 2 and 3 had the same design with 24 bottles incubated 3 times for 48 h each. During the 48-h incubation, the cumulative pressure was recorded to determine gas production kinetics, in vitro OM digestibility, and CH4 production. In experiment 1, N flow (g/d), efficiency of N use, efficiency of bacterial N synthesis, total volatile fatty acids (mM), and molar proportion of acetate, propionate, and isobutyrate were not affected by treatments. There were tendencies for a decrease in ruminal NH3-N and an increase in molar proportion of butyrate for the SBM diet compared with both CM diets. The molar proportion of valerate was greater in both CM diets, whereas the molar proportion of isovalerate and total branched-chain volatile fatty acids was lower for the CM diets compared with the SBM diet. In experiments 2 and 3, the SBM diet had a greater gas pool size than both CM diets. The SBM diet increased in vitro OM digestibility; however, it also tended to increase CH4 production (mM and g/kg of DM) compared with both CM diets. Based on the results of this study, CM with RUP varying from 38 to 50% of crude protein does not affect ruminal fermentation, nutrient digestion, and microbial growth when CM is included at up to 34% of the diet.


Assuntos
Brassicaceae/química , Proteínas Alimentares/metabolismo , Fermentação , Glycine max/química , Metano/biossíntese , Proteínas de Plantas/metabolismo , Rúmen/metabolismo , Proteínas de Soja/metabolismo , Ração Animal , Animais , Bovinos , Digestão , Técnicas In Vitro , Cinética , Distribuição Aleatória
9.
J Dairy Sci ; 100(5): 3548-3562, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28259401

RESUMO

Two lactation trials were conducted comparing the feeding value of silages made from birdsfoot trefoil (BFT, Lotus corniculatus L.) that had been selected for low (BFTL), medium (BFTM), and high (BFTH) levels of condensed tannins (CT) to an alfalfa silage (AS) when fed as the principal forage in total mixed rations. Diets also included corn silage, high-moisture shelled corn, soybean meal, soy hulls, and supplemental fat. In trial 1, 32 lactating Holstein cows were blocked by days in milk, assigned to treatment sequences in 8 balanced 4 × 4 Latin squares, and fed 50% dietary dry matter from AS or 1 of 3 BFT silages containing 0.6, 1.2, or 1.7% CT. Diets averaged 17.5 to 19.5% crude protein and 26% neutral detergent fiber on a dry matter basis. Data were collected over the last 2 wk of each 4-wk period. Intakes were 1.3 to 2.8 kg of dry matter/d greater on BFT than on AS and cows gained 0.5 kg of body weight/d on BFT diets while losing 0.14 kg of body weight/d on the AS diet; this resulted in greater milk per dry matter intake (DMI) on AS. Linear effects indicated true protein yield and milk urea nitrogen declined with increasing CT concentration and quadratic effects indicated DMI, energy-corrected milk, and fat yield were increased at intermediate CT concentration. True protein yield and apparent N-efficiency were greater, and milk urea nitrogen lower, on all BFT diets than on AS. In trial 2, 50 lactating Holstein cows were fed a covariate AS diet for 2 wk and then blocked by parity and days in milk and randomly assigned to 1 of 5 diets that were fed continuously for 12 wk. Diets contained (dry matter basis) 48% AS, 16% AS plus 32% of 1 of 3 BFT silages with 0.5, 0.8, or 1.5% CT, or 48% of an equal mixture of each BFT silage. Diets averaged 16.5% crude protein and 30% neutral detergent fiber. Intake and milk yield tended to be lower on AS than BFT, but body weight gains averaged 0.6 kg/d on all diets. Cows fed any of the BFT silages had reduced milk urea nitrogen and ruminal ammonia and reduced urinary N excretion. Feeding the BFT mixture reduced concentrations of milk true protein and milk urea nitrogen and depressed apparent nutrient digestibility. Among diets containing the individual BFT silages, linear reductions in DMI and yield of milk, fat, true protein, lactose, and SNF were observed with increasing CT concentration. By contrast, a previous trial with the same BFT populations showed that substituting BFTH silage containing 1.6% CT for AS in rations containing 60% silage dry matter had no effect on intake, increased yield of milk, energy-corrected milk and milk components, elevated protein use-efficiency, but with a more modest reduction in milk urea nitrogen and urinary N excretion. Silage analyses suggested that the inconsistent responses among trials were related to growth environment or ensiling effects that altered tannin-protein interactions in BFT silage. Differences in diet formulation among trials may have also influenced responses. Results from the current and previous trials indicate further work is needed to identify optimum tannin levels in forages.


Assuntos
Medicago sativa/metabolismo , Silagem , Taninos , Animais , Bovinos , Dieta/veterinária , Digestão , Feminino , Lactação , Lotus , Leite/química , Nitrogênio/metabolismo , Rúmen/metabolismo , Zea mays/metabolismo
10.
J Dairy Sci ; 97(8): 5088-100, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24931520

RESUMO

The objectives of this study were to evaluate the feeding of coconut oil (CO), in which lauric acid (La) comprises about 50% of the fatty acid composition, as a practical rumen protozoa (RP) suppressing agent, to assess whether the source of La affects ruminal fermentation and animal performance and to test whether suppressing RP improves N utilization, nutrient digestion, nutrient flow at the omasal canal, and milk production. Fifteen multiparous Holstein cows (3 fitted with ruminal cannulas) and 15 primiparous Holstein cows (3 fitted with ruminal cannulas) were used in a replicated 3×3 Latin square experiment with 14d of adaptation and 14d of sample collection. Diets were fed as total mixed ration and contained (dry matter basis) 10% corn silage, 50% alfalfa silage, and 40% concentrate. The control diet contained 3% (dry matter basis) calcium soaps of palm oil fatty acids (Megalac, Church & Dwight Co. Inc., Princeton, NJ) as a ruminally inert fat source and had no added La or CO. Diets with La and CO were formulated to contain equal amounts of La (1.3%, dry matter basis). Dry matter intake was not affected by treatment. Both CO and La reduced RP numbers by about 40%. Lauric acid reduced yield of milk and milk components; however, CO did not affect yield of milk and yields of milk components. Both La and CO caused small reductions in total VFA concentration; CO increased molar proportion of ruminal propionate, reduced ruminal ammonia and branched-chain volatile fatty acids, suggesting reduced protein degradation, and reduced milk urea N and blood urea N concentrations, suggesting improved protein efficiency. Lauric acid reduced total-tract apparent digestibility of neutral detergent fiber and acid detergent fiber as well as ruminal apparent digestibility of neutral detergent fiber and acid detergent fiber as measured at the omasal canal; however, CO did not alter fiber digestion. Microbial protein flow at the omasal canal, as well as the flow of N fractions at the omasal canal, did not differ among treatments. Results from this experiment have confirmed that dietary La is not a practical agent for suppressing RP population in dairy cows, mainly because of its negative effects on fiber digestion and ruminal fermentation. Intake of CO appeared to reduce ruminal and improve protein efficiency, but did not improve milk production, milk composition, or increase microbial outflow from the rumen. Based on the results of this study, a 40% reduction of RP population is not sufficient to improve N utilization in dairy cows.


Assuntos
Dieta/veterinária , Fermentação , Ácidos Láuricos/administração & dosagem , Leite/metabolismo , Óleos de Plantas/administração & dosagem , Rúmen/parasitologia , Amônia/metabolismo , Animais , Bovinos , Óleo de Coco , Fibras na Dieta/administração & dosagem , Digestão , Ácidos Graxos/metabolismo , Feminino , Lactação , Medicago sativa , Leite/química , Omaso/metabolismo , Óleo de Palmeira , Rúmen/metabolismo , Silagem , Zea mays
11.
Animal ; 8(7): 1191-200, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24785122

RESUMO

An experiment was conducted to examine whether increased CLA in milk of dairy cows fed fresh pasture compared with alfalfa and corn silages was because of ruminal or endogenous synthesis. Eight Holsteins were fed a total mixed ration using alfalfa and corn silages as the forage source in confinement or grazed in a replicated crossover design. The proportion of total fatty acids as CLA (primarily c9, t11-18:2) in g/100 g was 0.44 v. 0.28 in ruminal digesta, 0.89 v. 0.53 in omasal digesta and 0.71 v. 1.06 in milk during confinement feeding and grazing, respectively. Blood plasma CLA was 0.54 v. 1.05 mg/l for the two treatments, respectively. The increased concentration of CLA in milk with grazing likely resulted from increased synthesis through desaturation of t11-18:1 in the mammary gland.


Assuntos
Ração Animal/análise , Bovinos/fisiologia , Dieta/veterinária , Ácidos Linoleicos Conjugados/farmacologia , Leite/química , Fenômenos Fisiológicos da Nutrição Animal , Animais , Estudos Cross-Over , Ácidos Graxos , Feminino , Lactação , Ácidos Linoleicos Conjugados/química , Medicago sativa , Omaso , Zea mays
12.
J Anim Sci ; 91(5): 2243-53, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23463566

RESUMO

The objectives of this study were 1) to determine the level of lauric acid (LA) addition to the diet necessary to effectively suppress ruminal protozoa (RP) to the extent observed when a single dose was given directly into the rumen, 2) to assess LA effects on production and ruminal metabolism, and 3) to determine the time needed for RP to reestablish themselves after LA is withdrawn from the diet of lactating dairy cows. In Exp. 1, 2 Holstein cows fitted with ruminal cannulae were used in a split-plot design pilot study. Both cows consumed the same level of LA, starting with 0 g/d and increasing to 129, 270, and 438 g/d mixed into the diet. Diets were fed as total mixed ration (TMR) and contained (DM basis) 30% corn silage, 30% alfalfa silage, and 40% concentrate. Lauric acid intake linearly decreased DMI (P = 0.03), RP numbers (P < 0.01), ruminal acetate molar proportion (P = 0.03), and ruminal ammonia concentration (P = 0.03). Lauric acid intake linearly increased ruminal valerate molar proportion (P = 0.02). A quadratic response of LA consumption was observed on total ruminal VFA concentration (P < 0.01) and propionate molar proportion (P < 0.01), with maximum responses at 270 g/d of LA intake. A quadratic response of LA consumption was also observed on total ruminal free amino acid (TAA) concentration (P < 0.01), with minimum concentration at 270 g/d of LA intake. After withdrawing the greatest LA dose from the diet, RP returned to their original numbers in 12 d. In Exp. 2, 48 multiparous Holstein cows (8 with ruminal cannulae) were blocked by days in milk into 12 blocks of 4 cows (2 blocks of cannulated cows) and randomly assigned within replicated 4 × 4 Latin squares to balanced dietary treatment sequences. Diets were fed as TMR and contained (DM basis) 36% corn silage, 29% alfalfa silage, and 35% concentrate, and LA intake levels were 0, 220, 404, and 543 g/d mixed in the TMR. In Exp. 2, LA linearly reduced RP (P < 0.01), ruminal ammonia (P < 0.01), and total free AA concentration (P < 0.01); however, dietary LA also linearly decreased DM intake (P < 0.01). Intake of LA linearly reduced ruminal total VFA concentration (P < 0.01); DM, OM, NDF, and CP digestibility (P < 0.01); and milk production and milk components (P < 0.01). Therefore, LA does not appear to be a feasible RP suppressant for feeding in practical diets.


Assuntos
Bovinos/fisiologia , Bovinos/parasitologia , Ácidos Láuricos/farmacologia , Rúmen/efeitos dos fármacos , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Digestão , Relação Dose-Resposta a Droga , Comportamento Alimentar , Feminino , Fermentação , Lactação , Ácidos Láuricos/administração & dosagem , Leite/química , Leite/metabolismo , Rúmen/metabolismo , Rúmen/parasitologia , Fatores de Tempo
13.
J Dairy Sci ; 96(4): 2374-2386, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23462167

RESUMO

Pima cotton production is increasing in the United States, but Pima cottonseed generally contains higher concentrations of the antinutritive pigment gossypol than conventional upland cottonseed. Heating promotes the reaction of gossypol with protein, reducing gossypol absorption and toxicity. The objective of this study was to assess the nutritional value for dairy cattle of Pima cottonseed cake (PCSC) that was heated and oil largely removed by an experimental extrusion process, compared with upland cottonseed (UCS) and Pima cottonseed (PCS). The PCS had greater crude protein (CP) and ether extract, less neutral detergent fiber (NDF) and acid detergent fiber (ADF), similar total gossypol, but higher (-)-gossypol isomer compared with UCS. Extrusion reduced lipid content by 73%, increased concentrations of CP, NDF, and ADF, and reduced total gossypol, (+)-gossypol, and (-)-gossypol in PCSC versus PCS. Forty lactating Holsteins (8 with ruminal cannulas) were blocked by days in milk into 5 squares in a replicated, incomplete 8 × 8 Latin square, and were fed diets containing, on a dry matter (DM) basis, 30% alfalfa silage, 31% corn silage, 21 to 25% high-moisture corn, and about 15% CP. Diets were fed as total mixed rations for ad libitum intake. Supplemental CP was from (1) solvent soybean meal (SSBM) only or 50% from SSBM plus 50% from (2) UCS, (3) PCS, (4) PCSC, (5) UCS plus PCS, and (6) UCS plus PCSC, or (7) 50% from expeller soybean meal (ESBM) plus 50% from PCS, and (8) 50% from ESBM plus 50% from PCSC. Periods were 4 wk long (total of 16 wk); production data were collected over the last 2 wk and blood and ruminal samples were taken on d 28 of each period. Data were analyzed using Proc Mixed of SAS (SAS Institute Inc., Cary, NC). Diet affected dry matter intake, with greatest intake on diet 6 and lowest intake on diets 1 and 3. The highest milk fat content was observed on diet 5 and the greatest fat yield on diet 7; fat content and yield were lowest on diet 1 (soybean meal control). Milk fat secretion was proportional to dietary fat content, indicating that cottonseed oil was used effectively for milk fat synthesis. We observed a trend for an effect on milk protein yield with the greatest protein secretion occurring on diet 7. Milk urea was lowest on diets 3, 7, and 8. Ruminal concentrations of branched-chain volatile fatty acids were lower, or tended to be lower, when PCSC replaced either UCS or PCS in the diet, suggesting reduced degradation and increased escape of PCSC protein. Among cottonseed-containing diets, total gossypol intake was lowest on PCSC, intermediate on PCS, and highest on UCS. Total gossypol and both (+)- and (-)-isomers of gossypol were higher in blood plasma on PCS and lower on PCSC than on the corresponding diets containing UCS, indicating that the extrusion process reduced gossypol absorption. In this trial, production on diets supplemented with UCS, PCS, or PCSC was comparable to that on diets containing soybean meal.


Assuntos
Bovinos/fisiologia , Proteínas Alimentares/administração & dosagem , Gossypium/química , Lactação/fisiologia , Sementes/química , Proteínas de Soja/administração & dosagem , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Fibras na Dieta/administração & dosagem , Digestão , Feminino , Manipulação de Alimentos/métodos , Gossipol/administração & dosagem , Gossipol/efeitos adversos , Gossipol/sangue , Temperatura Alta , Valor Nutritivo , Rúmen/metabolismo
14.
J Anim Sci ; 91(1): 363-73, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23097406

RESUMO

The objectives of this study were to evaluate lauric acid (LA) as a practical ruminal protozoa-suppressing agent and assess effects of protozoal suppression on fermentation patterns and milk production in dairy cows. In a pilot study, 6 lactating Holstein cows fitted with ruminal cannulae were used in a randomized complete-block design trial. Cows were fed a basal total mixed ration (TMR) containing (DM basis) 15% alfalfa silage, 40% corn silage, 30% rolled high moisture shelled corn, and 14% solvent soybean meal, and assigned to 1 of 3 treatments: 1) control, 2) 160 g/d of LA, or 3) 222 g/d of sodium laurate, which is equimolar to 160 g/d of LA, all given as a single dose into the rumen via cannulae before feeding. Both agents showed high antiprotozoal activity when pulse dosed at these amounts via ruminal cannulae, reducing protozoa by 90% (P<0.01) within 2 d of treatment. Lauric acid reduced ruminal ammonia concentration by 60% (P<0.01) without altering DMI. Both agents reduced ruminal total free AA concentration (P<0.01) and LA did not affect ruminal pH or total VFA concentration. In a large follow-up feeding trial, 52 Holstein cows (8 with ruminal cannulae) were used in a randomized complete-block design trial. Cows were assigned to 1 of 4 diets and fed only that diet throughout the study. The TMR contained (DM basis) 29% alfalfa silage, 36% corn silage, 14% rolled high moisture shelled corn, and 8% solvent soybean meal. The 4 experimental diets were similar, except part of the finely ground dry corn was replaced with LA in stepwise increments from 0 to 0.97% of dietary DM, which provided (as consumed) 0, 83, 164, and 243 g/d of LA. Adding these amounts of LA to the TMR did not affect DMI, ruminal pH, or other ruminal traits, and milk production. However, LA consumed at 164 and 243 g/d in the TMR reduced the protozoal population by only 25% and 30% (P=0.05), respectively, showing that these levels, when added to the TMR, were not sufficient to achieve a concentration within the rumen that promoted the antiprotozoal effect of LA.


Assuntos
Bovinos/fisiologia , Lactação/efeitos dos fármacos , Ácidos Láuricos/farmacologia , Leite , Rúmen/parasitologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Relação Dose-Resposta a Droga , Feminino , Fermentação , Lactação/fisiologia , Ácidos Láuricos/administração & dosagem
15.
J Dairy Sci ; 96(1): 460-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23141831

RESUMO

The objective of this study was to compare milk production and nutrient utilization in dairy cattle fed silage made from alfalfa (AL) or red clover (RC) versus birdsfoot trefoil (BFT) selected for low, normal, and high levels of condensed tannins. Condensed tannin contents of the 3 BFT silages were 8, 12, and 16 g/kg of DM by butanol-HCl assay. Twenty-five multiparous Holstein cows (5 fitted with ruminal cannulas) were blocked by days in milk and randomly assigned within blocks to incomplete 5×5 Latin squares. Diets contained [dry matter (DM) basis] about 60% AL, 50% RC, or 60% of 1 of the 3 BFT; the balance of dietary DM was largely from high-moisture corn plus supplemental crude protein from soybean meal. Diets were balanced to approximately 17% crude protein and fed for four 3-wk periods; 2 wk were allowed for adaptation and production data were collected during the last week of each period. No differences existed in DM intake or milk composition due to silage source, except that milk protein content was lowest for RC. Yields of milk, energy-corrected milk, fat, protein, lactose, and solids-not-fat were greater for the 3 BFT diets than for diets containing AL or RC. Feeding BFT with the highest condensed tannin content increased yield of milk, protein, and solids-not-fat compared with BFT containing the lowest amount of condensed tannin. Moreover, milk-N/N-intake was higher, and milk urea nitrogen concentration and urinary urea-N excretion were lower for diets with normal levels of BFT than for AL or RC diets. Feeding RC resulted in the highest apparent digestibility of DM, organic matter, neutral detergent fiber, acid detergent fiber, and hemicellulose and lowest ruminal concentrations of ammonia and free amino acids. Ruminal branched-chain volatile fatty acid levels were lowest for RC diets and diets with high levels of BFT and highest for the AL diet. Overall, diets containing BFT silage supported greater production than diets containing silage from AL or RC. The results indicated that feeding BFT or other legume silages containing condensed tannins can enhance performance and N utilization in lactating dairy cows.


Assuntos
Dieta/veterinária , Lactação/fisiologia , Lotus , Silagem , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Animais , Bovinos , Feminino , Medicago sativa , Leite/metabolismo , Trifolium
16.
Animal ; 6(4): 624-32, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22436279

RESUMO

The objective of this experiment was to quantify the effects of unroasted or roasted ground-shelled corn (GSC), when fed with alfalfa ensiled in bag, bunker, or O2-limiting tower silos on ruminal digestion and microbial CP synthesis in lactating dairy cows. The roasted corn was heat-treated in a propane-fired roasting system. Alfalfa was harvested as second cutting from fields with regrowth of the same maturity. A portion of each field was allotted to each silo. The diets with 3 × 2 factorial arrangement of treatments were fed to six multiparous rumen-cannulated Holstein cows in a cyclic change-over design with five 21-day periods. Experimental diets were comparable and averaged (on dry matter (DM) basis): 410 g/kg alfalfa silage (AS), 150 g/kg corn silage, 350 g/kg GSC, 50 g/kg soybean meal, 40 g/kg roasted soybeans, 177 g/kg CP, 264 g/kg NDF and 250 g/kg starch. Nutrient flow was quantified by the omasal sampling technique with use of three markers (Co, Yb and indigestible NDF). Continuous infusion of 10% atom excess (15NH4)2SO4 was used to label microbial CP. None of the interactions between storage structure of dietary AS and corn type were significant. DM intake was not different among dietary treatments, averaging 24.5 kg/day across diets. Means of ADF digested in the rumen for cows fed diets with AS from bag, bunker and O2-limiting tower silo were 2.1, 1.7 and 2.1 kg/day, respectively, and was lower in cows fed AS from the bunker silo. This response may partly be a reflection of the higher intake of ADF by cows fed AS ensiled in the O2-limiting tower silo compared with the bunker. There was a slightly greater supply of fermentable substrates for cows fed diets with roasted compared with unroasted GSC. The small increases in yield of milk protein and lactose observed in the previous production trial in cows fed diets containing roasted corn may have occurred because of greater supply of fermentable substrates.


Assuntos
Bovinos/fisiologia , Digestão/fisiologia , Armazenamento de Alimentos/métodos , Medicago sativa , Rúmen/fisiologia , Silagem , Zea mays , Ração Animal/análise , Criação de Animais Domésticos , Animais , Bactérias/metabolismo , Bovinos/metabolismo , Dieta/veterinária , Ingestão de Alimentos , Feminino , Lactação/fisiologia , Medicago sativa/química , Rúmen/microbiologia , Silagem/análise , Zea mays/química
17.
J Dairy Sci ; 94(9): 4690-4, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21854942

RESUMO

The purpose of this study was to compile and evaluate relationships between feed nitrogen (N) intake, milk urea N (MUN), urinary urea N (UUN), and ammonia (NH(3)) emissions from dairy farms to aid policy development. Regression relationships between MUN, UUN, and NH(3) emissions were compiled from studies conducted in Wisconsin, California, and the Netherlands. Relative reductions in NH(3) emissions were calculated as percentage decreases in NH(3) emissions associated with a baseline MUN level of 14 mg/dL (prevailing industry average). For 3 studies with cows in stanchion barns, relative NH(3) emission reductions of 10.3 to 28.2% were obtained when MUN declined from 14 to 10mg/dL. Similarly, analyses of 2 freestall studies provided relative NH(3) emission reductions of 10.5 to 33.7% when MUN levels declined from 14 to 10mg/dL. The relative reductions in NH(3) emissions from both stanchion and freestall barns can be associated directly with reductions in UUN excretion, which can be determined using MUN. The results of this study may help create new awareness, and perhaps eventual industry-based incentives, for management practices that enhance feed N use efficiency and reduce MUN, UUN, and NH(3) emissions from dairy farms.


Assuntos
Amônia/análise , Indústria de Laticínios/métodos , Poluição Ambiental/análise , Leite/química , Nitrogênio/análise , Ureia/análise , Amônia/metabolismo , Animais , Bovinos , Meio Ambiente , Ureia/urina
18.
J Dairy Sci ; 94(6): 3081-93, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21605777

RESUMO

Holstein cows housed in a modified tie-stall barn were used to determine the effect of feeding diets with different forage-to-concentrate ratios (F:C) on performance and emission of CH(4), CO(2) and manure NH(3)-N. Eight multiparous cows (means ± standard deviation): 620 ± 68 kg of body weight; 52 ± 34 d in milk and 8 primiparous cows (546 ± 38 kg of body weight; 93 ± 39 d in milk) were randomly assigned to 1 of 4 air-flow controlled chambers, constructed to fit 4 cows each. Chambers were assigned to dietary treatment sequences in a single 4 × 4 Latin square design. Dietary treatments, fed as 16.2% crude protein total mixed rations included the following F:C ratio: 47:53, 54:46, 61:39, and 68:32 [diet dry matter (DM) basis]. Forage consisted of alfalfa silage and corn silage in a 1:1 ratio. Cow performance and emission data were measured on the last 7 d and the last 4 d, respectively of each 21-d period. Air samples entering and exiting each chamber were analyzed with a photo-acoustic field gas monitor. In a companion study, fermentation pattern was studied in 8 rumen-cannulated cows. Increasing F:C ratio in the diet had no effect on DM intake (21.1 ± 1.5 kg/d), energy-corrected milk (ECM, 37.4 ± 2.2 kg/d), ECM/DM intake (1.81 ± 0.18), yield of milk fat, and manure excretion and composition; however, it increased milk fat content linearly by 7% and decreased linearly true protein, lactose, and solids-not-fat content (by 4, 1, and 2%, respectively) and yield (by 10, 6, and 6%, respectively), and milk N-to-N intake ratio. On average 93% of the N consumed by the cows in the chambers was accounted for as milk N, manure N, or emitted NH(3)-N. Increasing the F:C ratio also increased ruminal pH linearly and affected concentrations of butyrate and isovalerate quadratically. Increasing the F:C ratio from 47:53 to 68:32 increased CH(4) emission from 538 to 648 g/cow per day, but had no effect on manure NH(3)-N emission (14.1 ± 3.9 g/cow per day) and CO(2) emission (18,325 ± 2,241 g/cow per day). In this trial, CH(4) emission remained constant per unit of neutral detergent fiber intake (1g of CH(4) was emitted for every 10.3g of neutral detergent fiber consumed by the cow), but increased from 14.4 to 18.0 g/kg of ECM when the percentage of forage in the diet increased from 47 to 68%. Although the pattern of emission within a day was distinct for each gas, emissions were higher between morning feeding (0930 h) and afternoon milking (1600 h) than later in the day. Altering the level of forage within a practical range and rebalancing dietary crude protein with common feeds of the Midwest of the United States had no effects on manure NH(3)-N emission but altered CH(4) emission.


Assuntos
Amônia/análise , Dióxido de Carbono/análise , Bovinos/fisiologia , Dieta/veterinária , Lactação/fisiologia , Esterco/análise , Metano/biossíntese , Fenômenos Fisiológicos da Nutrição Animal , Animais , Feminino
19.
J Dairy Sci ; 94(4): 1967-77, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21426988

RESUMO

The aim of this work was to compare use of an o-phthaldialdehyde (OPA) colorimetric assay (OPA-C), which responds to both free AA and peptides, with an OPA fluorimetric assay (OPA-F), which is insensitive to peptides, to quantify rates of ruminal protein degradation in the inhibitor in vitro system using Michaelis-Menten saturation kinetics. Four protein concentrates (expeller-extracted soybean meal, ESBM; 2 solvent-extracted soybean meals, SSBM1 and SSBM2; and casein) were incubated in a ruminal in vitro system treated with hydrazine and chloramphenicol to inhibit microbial uptake of protein degradation products. Proteins were weighed to give a range of N concentrations (from 0.15 to 3 mg of N/mL of inoculum) and incubated with 10 mL of ruminal inoculum and 5 mL of buffer; fermentations were stopped after 2 h by adding trichloroacetic acid (TCA). Proteins were analyzed for buffer-soluble N and buffer extracts were treated with TCA to determine N degraded at t=0 (FD0). The TCA supernatants were analyzed for ammonia (phenol-hypochlorite assay), total AA (TAA; OPA-F), and TAA plus oligopeptides (OPA-C) by flow injection analysis. Velocity of protein degradation was computed from extent of release of 1) ammonia plus free TAA or 2) ammonia plus free TAA and peptides. Rate of degradation (kd) was quantified using nonlinear regression of the integrated Michaelis-Menten equation. The parameters Km (Michaelis constant) and kd (Vmax/Km), where Vmax=maximum velocity, were estimated directly; kd values were adjusted (Akd) for the fraction FD0 using the equation Akd=kd-FD0/2. The OPA-C assay yielded faster degradation rates due to the contribution of peptides to the fraction degraded (overall mean=0.280/h by OPA-C and 0.219/h by OPA-F). Degradation rates for SSBM samples (0.231/h and 0.181/h) and ESBM (0.086/h) obtained by the OPA-C assay were more rapid than rates reported by the National Research Council (NRC). Both assays indicated that the 2 SSBM differed in rumen-undegradable protein (RUP) content; the more slowly degraded SSBM had RUP content (35% by OPA-C) similar to that reported by the NRC. The RUP content of ESBM (42% by OPA-C) was lower than the NRC value. Preliminary studies with 4 additional protein concentrates confirmed that accounting for peptide formation increased degradation rate; however, a trend for an interaction between assay and protein source suggested that peptide release made a smaller contribution to rate for more slowly degraded proteins. The OPA-C assay is a simple and reliable method to quantify formation of small peptides.


Assuntos
Bovinos/metabolismo , Colorimetria/veterinária , Proteínas Alimentares/metabolismo , Fluorometria/veterinária , Peptídeos/metabolismo , Rúmen/metabolismo , o-Ftalaldeído/metabolismo , Aminoácidos/metabolismo , Animais , Colorimetria/métodos , Feminino , Fluorometria/métodos , Técnicas In Vitro , Reprodutibilidade dos Testes
20.
J Dairy Sci ; 94(4): 1978-88, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21426989

RESUMO

Objectives of this study were to quantify production responses of lactating dairy cows to supplying absorbable Met as isopropyl-2-hydroxy-4-(methylthio)-butanoic acid (HMBi), or rumen-protected Met (RPM, Smartamine M; Adisseo, Alpharetta, GA) fed with or without 2-hydroxy-4-(methylthio)-butanoic acid (HMB), and to determine whether Met supplementation will allow the feeding of reduced dietary crude protein (CP). Seventy cows were blocked by parity and days in milk into 14 blocks and randomly assigned within blocks to 1 of the 5 dietary treatments based on alfalfa and corn silages plus high-moisture corn: 1 diet with 15.6% CP and no Met source (negative control); 3 diets with 15.6% CP plus 0.17% HMBi, 0.06% RPM + 0.10% HMB, or 0.06% RPM alone; and 1 diet with 16.8% CP and no Met supplement (positive control). Assuming that 50% of ingested HMBi was absorbed from the gastrointestinal tract and 80% of the Met in RPM was absorbed at intestine, the HMBi and RPM supplements increased metabolizable Met supply by 9 g/d and improved the Lys:Met ratio from 3.6 to 3.0. After a 2-wk covariate period during which all cows received the same diet, cows were fed test diets continuously for 12 wk. Diet did not affect dry matter intake (mean ± SD, 25.0±0.3 kg/d), body weight gain (0.59±0.2 kg/d), or milk yield (41.7±0.6 kg/d). However, feeding HMBi increased yield of energy-corrected milk and milk content of protein and solids-not-fat. Moreover, trends were observed for increased milk fat content and yield of fat and true protein on all 3 diets containing supplemental Met. Apparent N efficiency (milk N/N intake) was highest on the RPM treatment. Feeding 16.8% CP without a Met source elevated milk urea N and urinary excretion of urea N and total N and reduced apparent N efficiency from 34.5 to 30.2%, without improving production. Overall results suggested that feeding HMBi or RPM would give similar improvements in milk production and N utilization.


Assuntos
Bovinos/fisiologia , Dieta/veterinária , Lactação/fisiologia , Metionina/administração & dosagem , Leite/metabolismo , Nitrogênio/metabolismo , Rúmen/metabolismo , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Butiratos/administração & dosagem , Butiratos/metabolismo , Bovinos/metabolismo , Suplementos Nutricionais , Feminino , Metionina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...