Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(7): 1621-1637, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369911

RESUMO

Deficits in cost/benefit decision making is a critical risk factor for gambling disorder. Reward-paired cues may play an important role, as these stimuli can enhance risk preference in rats. Despite extensive research implicating the dorsal striatum in the compulsive aspects of addiction, the role of nigrostriatal dopaminergic activity in cue-induced risk preference remains unclear, particularly in females. Accordingly, we examined the effects of manipulating the dopaminergic nigrostriatal pathway on cue-induced risky choice in female rats. TH:Cre rats were trained on the cued version of the rat Gambling Task. This task was designed such that maximal reward is attained by avoiding the high-risk, high-reward options and instead favouring the options associated with lower per-trial gains, as they feature less frequent and shorter time-out penalties. Adding reward-paired audiovisual cues to the task leads to greater risky choice on average. To assess the role of the nigrostriatal pathway, a viral vector carrying either Cre-dependent inhibitory or excitatory DREADD was infused into the substantia nigra. Rats then received clozapine-N-oxide either during task acquisition or after a stable performance baseline was reached. Inhibition of this pathway accelerated the development of risk preference in early sessions and increased risky choice during performance, but long-term inhibition actually improved decision making. Activation of this pathway had minimal effects. These results provide evidence for the involvement of the dopaminergic nigrostriatal pathway in cue-induced risk preference in females, therefore shedding light on its role in cost/benefit decision-making deficits and expanding our knowledge of the female dopaminergic system.


Assuntos
Dopamina , Jogo de Azar , Ratos , Feminino , Animais , Dopamina/metabolismo , Comportamento de Escolha/fisiologia , Sinais (Psicologia) , Ratos Long-Evans , Recompensa , Tomada de Decisões/fisiologia
2.
J Neurosci ; 43(6): 979-992, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36623876

RESUMO

Impulse control and/or gambling disorders can be triggered by dopamine agonist therapies used to treat Parkinson's disease, but the cognitive and neurobiological mechanisms underlying these adverse effects are unknown. Recent data show that adding win-paired sound and light cues to the rat gambling task (rGT) potentiates risky decision-making and impulsivity via the dopamine system, and that changing dopaminergic tone has a greater influence on behavior while subjects are learning task contingencies. Dopamine agonist therapy may therefore be potentiating risk-taking by amplifying the behavioral impact of gambling-related cues on novel behavior. Here, we show that ropinirole treatment in male rats transiently increased motor impulsivity but robustly and progressively increased choice of the high-risk/high-reward options when administered during acquisition of the cued but not uncued rGT. Early in training, ropinirole increased win-stay behavior after large unlikely wins on the cued rGT, indicative of enhanced model-free learning, which mediated the drug's effect on later risk preference. Ex vivo cFos imaging showed that both chronic ropinirole and the addition of win-paired cues suppressed the activity of dopaminergic midbrain neurons. The ratio of midbrain:prefrontal cFos+ neurons was lower in animals with suboptimal choice patterns and tended to predict risk preference across all rats. Network analyses further suggested that ropinirole induced decoupling of the dopaminergic cells of the VTA and nucleus accumbens but only when win-paired cues were present. Frontostriatal activity uninformed by the endogenous dopaminergic teaching signal therefore appeared to perpetuate risky choice, and ropinirole exaggerated this disconnect in synergy with reward-paired cues.SIGNIFICANCE STATEMENT D2/3 receptor agonists, used to treat Parkinson's disease, can cause gambling disorder through an unknown mechanism. Ropinirole increased risky decision-making in rats, but only when wins were paired with casino-inspired sounds and lights. This was mediated by increased win-stay behavior after large unlikely wins early in learning, indicating enhanced model-free learning. cFos imaging showed that ropinirole suppressed activity of midbrain dopamine neurons, an effect that was mimicked by the addition of win-paired cues. The degree of risky choice rats exhibited was uniquely predicted by the ratio of midbrain dopamine:PFC activity. Depriving the PFC of the endogenous dopaminergic teaching signal may therefore drive risky decision-making on-task, and ropinirole acts synergistically with win-paired cues to amplify this.


Assuntos
Agonistas de Dopamina , Doença de Parkinson , Ratos , Masculino , Animais , Agonistas de Dopamina/farmacologia , Dopamina/farmacologia , Sinais (Psicologia) , Ratos Long-Evans , Recompensa , Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia
3.
Behav Neurosci ; 137(1): 41-51, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36395021

RESUMO

The main psychoactive compound within the cannabis plant, Δ9-tetrahydrocannabinol (THC), is thought to drive both the sensation of "high" and the cognitive impairments associated with cannabis consumption. Researchers keen to understand how cannabis impairs cognition have, therefore, studied the behavioral effects of systemic injections of THC in animal models. However, cannabis contains multiple other cannabinoids which may critically modulate the resulting cognitive effects. Users also typically eat or smoke cannabis, leading to concern over the translational validity of pure THC injections. We, therefore, tested whether acute oral administration of two different commercially available cannabis extracts, marketed as C. indica or C. sativa, decreased male Long-Evans rats' willingness to exert greater cognitive effort in order to maximize reward earned, as expected from previous experiments using injected THC. Both oils were matched for THC and cannabidiol content. While both cannabis products slowed response times at higher doses, only C. indica oil at the highest dose administered (10 mg/kg THC) decreased the number of trials on which rats chose to complete high-effort/high-reward trials. Repeated dosing with a medium dose of either cannabinoid product (3 mg/kg THC) did not influence choice. Ex vivo analyses confirmed comparable levels of brain THC after C. indica or C. sativa administration. Although controversial in the field, these results support the suggestion that products marketed as different cannabis cultivars have dissociable cognitive effects that may not resemble pure THC and emphasize the importance of the route of administration in experimental design. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Canabidiol , Cannabis , Ratos , Animais , Dronabinol/farmacologia , Esforço Físico , Ratos Long-Evans , Canabidiol/farmacologia , Cognição
4.
Behav Neurosci ; 134(4): 309-322, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32525335

RESUMO

Women and men can differ in their propensity to take risks and develop impulse control and addiction disorders. Sexual dimorphisms in behavioral control by the mesolimbic dopaminergic reward system may underlie these phenomena, given its sensitivity to gonadal hormones. However, this is hard to test experimentally using humans. Using the rat gambling task (rGT), we investigated what impact acute inhibition of accumbal dopamine had on decision-making and impulsivity in animals of both sexes. We expressed an inhibitory designer receptor exclusively activated by designer drugs (hM4D[Gi]) in the accumbal dopaminergic efferents of female and male transgenic (Tg) rats, engineered to selectively express cre recombinase in neurons synthesizing tyrosine hydroxylase. We then trained the rats to perform the rGT and assessed the effect of an acute clozapine-n-oxide (0-3 mg/kg) challenge. Chemogenetic inhibition of dopaminergic projections to the accumbens did not affect choice in females, perhaps due to low levels of risky choice in Tg+ animals at baseline, but induced a switch from risky to optimal decision-making in males performing the cued rGT. This manipulation also decreased motor impulsivity but only in females. These data support the hypothesis that cue-driven risky choice is mediated, at least in males, by activity of accumbal dopaminergic neurons. However, motor impulsivity is more sensitive to inhibition of accumbal dopamine neurons in female rats. These data may help explain differences in the manifestation of addictions across gender and reinforce the importance of examining both sexes when seeking to attribute control of behavior to specific monoaminergic pathways. (PsycInfo Database Record (c) 2020 APA, all rights reserved).


Assuntos
Neurônios Dopaminérgicos/fisiologia , Comportamento Impulsivo/efeitos dos fármacos , Comportamento Impulsivo/fisiologia , Animais , Comportamento Aditivo/fisiopatologia , Comportamento de Escolha/fisiologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Sinais (Psicologia) , Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Jogo de Azar/fisiopatologia , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Ratos , Ratos Long-Evans , Ratos Transgênicos , Recompensa , Assunção de Riscos , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...