Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(11): 118201, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-37001108

RESUMO

We computationally study the frictional properties of sheared granular media subjected to harmonic vibration applied at the boundary. Such vibrations are thought to play an important role in weakening flows, yet the independent effects of amplitude, frequency, and pressure on the process have remained unclear. Based on a dimensional analysis and DEM simulations, we show that, in addition to a previously proposed criterion for peak acceleration that leads to breaking of contacts, weakening requires the absolute amplitude squared of the displacement to be sufficiently large relative to the confining pressure. The analysis provides a basis for predicting flows subjected to arbitrary external vibration and demonstrates that a previously unrecognized second process that is dependent on dissipation contributes to shear weakening under vibrations.

2.
Science ; 377(6601): 30-31, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35771926

RESUMO

The atmospheric wave from the Tonga eruption drove faster-than-normal tsunamis.


Assuntos
Tsunamis , Tonga
3.
Science ; 373(6551): 204-207, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244411

RESUMO

Successive earthquakes can drive landscape evolution. However, the mechanism and pace with which landscapes respond remain poorly understood. Offset channels in the Carrizo Plain, California, capture the fluvial response to lateral slip on the San Andreas Fault on millennial time scales. We developed and tested a model that quantifies competition between fault slip, which elongates channels, and aggradation, which causes channel infilling and, ultimately, abandonment. Validation of this model supports a transport-limited fluvial response and implies that measurements derived from present-day channel geometry are sufficient to quantify the rate of bedload transport relative to slip rate. Extension of the model identifies the threshold for which persistent change in transport capacity, obliquity in slip, or advected topography results in reorganization of the drainage network.

4.
Sci Adv ; 5(10): eaaw9386, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31616786

RESUMO

Slow slip transients on faults can last from seconds to months and stitch together the earthquake cycle. However, no single geophysical instrument is able to observe the full range of slow slip because of bandwidth limitations. Here, we connect seismic and geodetic data from the Mexican subduction zone to explore an instrumental blind spot. We establish a calibration of the daily median amplitude of the seismically recorded low-frequency earthquakes to the daily geodetically recorded moment rate of previously established slow slip events. This calibration allows us to use the precise evolution of low-frequency earthquake activity to quantitatively measure the moment of smaller, subdaily slip events that are unresolvable by geodesy alone. The resulting inferred slow slip moments scale with duration and inter-event time like ordinary earthquakes. These new quantifications help connect slow and fast events in a broad spectrum of transient slip and suggest that slow slip events behave much like ordinary earthquakes.

5.
Nature ; 574(7777): 185-186, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31597969

Assuntos
Desastres , Terremotos
6.
Science ; 364(6442): 736-737, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31123124
7.
Science ; 361(6405): 899-904, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30166486

RESUMO

Fluid injection can cause extensive earthquake activity, sometimes at unexpectedly large distances. Appropriately mitigating associated seismic hazards requires a better understanding of the zone of influence of injection. We analyze spatial seismicity decay in a global dataset of 18 induced cases with clear association between isolated wells and earthquakes. We distinguish two populations. The first is characterized by near-well seismicity density plateaus and abrupt decay, dominated by square-root space-time migration and pressure diffusion. Injection at these sites occurs within the crystalline basement. The second population exhibits larger spatial footprints and magnitudes, as well as a power law-like, steady spatial decay over more than 10 kilometers, potentially caused by poroelastic effects. Far-reaching spatial effects during injection may increase event magnitudes and seismic hazard beyond expectations based on purely pressure-driven seismicity.

8.
Sci Adv ; 4(2): eaao3225, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29487902

RESUMO

Fault slip during plate boundary earthquakes releases a portion of the shear stress accumulated due to frictional resistance to relative plate motions. Investigation of 101 large [moment magnitude (Mw) ≥ 7] subduction zone plate boundary mainshocks with consistently determined coseismic slip distributions establishes that 15 to 55% of all master event-relocated aftershocks with Mw ≥ 5.2 are located within the slip regions of the mainshock ruptures and few are located in peak slip regions, allowing for uncertainty in the slip models. For the preferred models, cumulative deficiency of aftershocks within the central three-quarters of the scaled slip regions ranges from 15 to 45%, increasing with the total number of observed aftershocks. The spatial gradients of the mainshock coseismic slip concentrate residual shear stress near the slip zone margins and increase stress outside the slip zone, driving both interplate and intraplate aftershock occurrence near the periphery of the mainshock slip. The shear stress reduction in large-slip regions during the mainshock is generally sufficient to preclude further significant rupture during the aftershock sequence, consistent with large-slip areas relocking and not rupturing again for a substantial time.

9.
Sci Adv ; 3(8): e1700441, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28808681

RESUMO

The state of Oklahoma has experienced an unprecedented increase in earthquake activity since 2009, likely driven by large-scale wastewater injection operations. Statewide injection rates peaked in early 2015 and steadily decreased thereafter, approximately coinciding with collapsing oil prices and regulatory action. If seismic activity is primarily driven by fluid injection, a noticeable seismogenic response to the decrease in injection rates is expected. Langenbruch and Zoback suggest that "the probability of potentially damaging larger events, should significantly decrease by the end of 2016 and approach historic levels within a few years." We agree that the rate of small earthquakes has decreased toward the second half of 2016. However, their specific predictions about seismic hazard require reexamination. We test the influence of the model parameters of Langenbruch and Zoback based on fits to observed seismicity distributions. The results suggest that a range of realistic aftershock decay rates and b values can lead to an increase in moderate earthquake probabilities from 37 to 80% in 2017 without any further alteration to the model. In addition, the observation that all four M ≥ 5 earthquakes to date occurred when injection rates were below the triggering threshold of Langenbruch and Zoback challenges the applicability of the model for the most societally significant events.

10.
Phys Rev E ; 96(3-1): 032913, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29346875

RESUMO

Granular temperature may control high-speed granular flows, yet it is difficult to measure in laboratory experiments. Here we utilize acoustic energy to measure granular temperature in dense shear flows. We show that acoustic energy captures the anticipated behavior of granular temperature as a function of grain size in quartz sand shear flows. We also find that granular temperature (through its proxy acoustic energy) is nearly linearly proportional to inertial number, and dilation is proportional to acoustic energy raised to the power 0.6±0.2. This demonstrates the existence of a relationship between granular temperature and dilation. It is also consistent with previous results on dilation due to externally imposed vibration, thus showing that internally and externally induced vibrations have identical results on granular shear flows.

11.
J Autism Dev Disord ; 46(3): 1071-83, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26572659

RESUMO

Although executive functioning (EF) difficulties are well documented among children and adolescents with autism spectrum disorder (ASD), little is known about real-world measures of EF among adults with ASD. Therefore, this study examined parent-reported real-world EF problems among 35 adults with ASD without intellectual disability and their correlations with adaptive functioning and co-morbid anxiety and depression symptomatology. A variable EF profile was found with prominent deficits occurring in flexibility and metacognition. Flexibility problems were associated with anxiety-related symptoms while metacognition difficulties were associated with depression symptoms and impaired adaptive functioning (though the metacognition-adaptive functioning relationship was moderated by ADHD symptoms). These persistent EF problems are predictors of broader functioning and therefore remain an important treatment target among adults with ASD.


Assuntos
Adaptação Psicológica , Ansiedade/psicologia , Transtorno do Espectro Autista/psicologia , Depressão/psicologia , Função Executiva , Adaptação Psicológica/fisiologia , Adolescente , Adulto , Ansiedade/diagnóstico , Ansiedade/epidemiologia , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/epidemiologia , Comorbidade , Depressão/diagnóstico , Depressão/epidemiologia , Função Executiva/fisiologia , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Adulto Jovem
12.
Science ; 344(6185): 700-2, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24833379
13.
Science ; 342(6163): 1208-11, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24311682

RESUMO

The mechanics of great subduction earthquakes are influenced by the frictional properties, structure, and composition of the plate-boundary fault. We present observations of the structure and composition of the shallow source fault of the 2011 Tohoku-Oki earthquake and tsunami from boreholes drilled by the Integrated Ocean Drilling Program Expedition 343 and 343T. Logging-while-drilling and core-sample observations show a single major plate-boundary fault accommodated the large slip of the Tohoku-Oki earthquake rupture, as well as nearly all the cumulative interplate motion at the drill site. The localization of deformation onto a limited thickness (less than 5 meters) of pelagic clay is the defining characteristic of the shallow earthquake fault, suggesting that the pelagic clay may be a regionally important control on tsunamigenic earthquakes.

14.
Science ; 342(6163): 1211-4, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24311683

RESUMO

Large coseismic slip was thought to be unlikely to occur on the shallow portions of plate-boundary thrusts, but the 11 March 2011 Tohoku-Oki earthquake [moment magnitude (Mw) = 9.0] produced huge displacements of ~50 meters near the Japan Trench with a resultant devastating tsunami. To investigate the mechanisms of the very large fault movements, we conducted high-velocity (1.3 meters per second) friction experiments on samples retrieved from the plate-boundary thrust associated with the earthquake. The results show a small stress drop with very low peak and steady-state shear stress. The very low shear stress can be attributed to the abundance of weak clay (smectite) and thermal pressurization effects, which can facilitate fault slip. This behavior provides an explanation for the huge shallow slip that occurred during the earthquake.

15.
Science ; 340(6140): 1555-9, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23812711

RESUMO

Permeability controls fluid flow in fault zones and is a proxy for rock damage after an earthquake. We used the tidal response of water level in a deep borehole to track permeability for 18 months in the damage zone of the causative fault of the 2008 moment magnitude 7.9 Wenchuan earthquake. The unusually high measured hydraulic diffusivity of 2.4 × 10(-2) square meters per second implies a major role for water circulation in the fault zone. For most of the observation period, the permeability decreased rapidly as the fault healed. The trend was interrupted by abrupt permeability increases attributable to shaking from remote earthquakes. These direct measurements of the fault zone reveal a process of punctuated recovery as healing and damage interact in the aftermath of a major earthquake.


Assuntos
Desastres , Terremotos , Água Subterrânea , China
16.
Science ; 341(6145): 543-6, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23845943

RESUMO

Geothermal power is a growing energy source; however, efforts to increase production are tempered by concern over induced earthquakes. Although increased seismicity commonly accompanies geothermal production, induced earthquake rate cannot currently be forecast on the basis of fluid injection volumes or any other operational parameters. We show that at the Salton Sea Geothermal Field, the total volume of fluid extracted or injected tracks the long-term evolution of seismicity. After correcting for the aftershock rate, the net fluid volume (extracted-injected) provides the best correlation with seismicity in recent years. We model the background earthquake rate with a linear combination of injection and net production rates that allows us to track the secular development of the field as the number of earthquakes per fluid volume injected decreases over time.

17.
Science ; 339(6120): 687-90, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23393262

RESUMO

The 2011 moment magnitude 9.0 Tohoku-Oki earthquake produced a maximum coseismic slip of more than 50 meters near the Japan trench, which could result in a completely reduced stress state in the region. We tested this hypothesis by determining the in situ stress state of the frontal prism from boreholes drilled by the Integrated Ocean Drilling Program approximately 1 year after the earthquake and by inferring the pre-earthquake stress state. On the basis of the horizontal stress orientations and magnitudes estimated from borehole breakouts and the increase in coseismic displacement during propagation of the rupture to the trench axis, in situ horizontal stress decreased during the earthquake. The stress change suggests an active slip of the frontal plate interface, which is consistent with coseismic fault weakening and a nearly total stress drop.

18.
Science ; 337(6093): 459-63, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22837526

RESUMO

Shear failure is the dominant mode of earthquake-causing rock failure along faults. High fluid pressure can also potentially induce rock failure by opening cavities and cracks, but an active example of this process has not been directly observed in a fault zone. Using borehole array data collected along the low-stress Chelungpu fault zone, Taiwan, we observed several small seismic events (I-type events) in a fluid-rich permeable zone directly below the impermeable slip zone of the 1999 moment magnitude 7.6 Chi-Chi earthquake. Modeling of the events suggests an isotropic, nonshear source mechanism likely associated with natural hydraulic fractures. These seismic events may be associated with the formation of veins and other fluid features often observed in rocks surrounding fault zones and may be similar to artificially induced hydraulic fracturing.

19.
Nature ; 441(7097): 1135-8, 2006 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-16810253

RESUMO

Earthquakes have been observed to affect hydrological systems in a variety of ways--water well levels can change dramatically, streams can become fuller and spring discharges can increase at the time of earthquakes. Distant earthquakes may even increase the permeability in faults. Most of these hydrological observations can be explained by some form of permeability increase. Here we use the response of water well levels to solid Earth tides to measure permeability over a 20-year period. At the time of each of seven earthquakes in Southern California, we observe transient changes of up to 24 degrees in the phase of the water level response to the dilatational volumetric strain of the semidiurnal tidal components of wells at the Piñon Flat Observatory in Southern California. After the earthquakes, the phase gradually returns to the background value at a rate of less than 0.1 degrees per day. We use a model of axisymmetric flow driven by an imposed head oscillation through a single, laterally extensive, confined, homogeneous and isotropic aquifer to relate the phase response to aquifer properties. We interpret the changes in phase response as due to changes in permeability. At the time of the earthquakes, the permeability at the site increases by a factor as high as three. The permeability increase depends roughly linearly on the amplitude of seismic-wave peak ground velocity in the range of 0.21-2.1 cm s(-1). Such permeability increases are of interest to hydrologists and oil reservoir engineers as they affect fluid flow and might determine long-term evolution of hydrological and oil-bearing systems. They may also be interesting to seismologists, as the resulting pore pressure changes can affect earthquakes by changing normal stresses on faults.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...