Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 147(6): 2023-2037, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38242634

RESUMO

DNAJC6 encodes auxilin, a co-chaperone protein involved in clathrin-mediated endocytosis (CME) at the presynaptic terminal. Biallelic mutations in DNAJC6 cause a complex, early-onset neurodegenerative disorder characterized by rapidly progressive parkinsonism-dystonia in childhood. The disease is commonly associated with additional neurodevelopmental, neurological and neuropsychiatric features. Currently, there are no disease-modifying treatments for this condition, resulting in significant morbidity and risk of premature mortality. To investigate the underlying disease mechanisms in childhood-onset DNAJC6 parkinsonism, we generated induced pluripotent stem cells (iPSC) from three patients harbouring pathogenic loss-of-function DNAJC6 mutations and subsequently developed a midbrain dopaminergic neuronal model of disease. When compared to age-matched and CRISPR-corrected isogenic controls, the neuronal cell model revealed disease-specific auxilin deficiency as well as disturbance of synaptic vesicle recycling and homeostasis. We also observed neurodevelopmental dysregulation affecting ventral midbrain patterning and neuronal maturation. To explore the feasibility of a viral vector-mediated gene therapy approach, iPSC-derived neuronal cultures were treated with lentiviral DNAJC6 gene transfer, which restored auxilin expression and rescued CME. Our patient-derived neuronal model provides deeper insights into the molecular mechanisms of auxilin deficiency as well as a robust platform for the development of targeted precision therapy approaches.


Assuntos
Auxilinas , Terapia Genética , Proteínas de Choque Térmico HSP40 , Células-Tronco Pluripotentes Induzidas , Transtornos Parkinsonianos , Humanos , Terapia Genética/métodos , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/terapia , Transtornos Parkinsonianos/metabolismo , Auxilinas/genética , Auxilinas/metabolismo , Masculino , Feminino , Neurônios Dopaminérgicos/metabolismo , Mutação , Sinapses/genética , Sinapses/metabolismo , Endocitose/fisiologia , Endocitose/genética , Criança
2.
Life Sci Alliance ; 7(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37923360

RESUMO

To identify functional differences between vertebrate clathrin light chains (CLCa or CLCb), phenotypes of mice lacking genes encoding either isoform were characterised. Mice without CLCa displayed 50% neonatal mortality, reduced body weight, reduced fertility, and ∼40% of aged females developed uterine pyometra. Mice lacking CLCb displayed a less severe weight reduction phenotype compared with those lacking CLCa and had no survival or reproductive system defects. Analysis of female mice lacking CLCa that developed pyometra revealed ectopic expression of epithelial differentiation markers (FOXA2 and K14) and a reduced number of endometrial glands, indicating defects in the lumenal epithelium. Defects in lumen formation and polarity of epithelial cysts derived from uterine or gut cell lines were also observed when either CLCa or CLCb were depleted, with more severe effects from CLCa depletion. In cysts, the CLC isoforms had different distributions relative to each other, although they converge in tissue. Together, these findings suggest differential and cooperative roles for CLC isoforms in epithelial lumen formation, with a dominant function for CLCa.


Assuntos
Cistos , Piometra , Humanos , Feminino , Animais , Camundongos , Cadeias Leves de Clatrina/genética , Cadeias Leves de Clatrina/metabolismo , Linhagem Celular , Isoformas de Proteínas
3.
Biochem J ; 479(11): 1237-1256, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35594055

RESUMO

Trafficking regulator of GLUT4-1, TRARG1, positively regulates insulin-stimulated GLUT4 trafficking and insulin sensitivity. However, the mechanism(s) by which this occurs remain(s) unclear. Using biochemical and mass spectrometry analyses we found that TRARG1 is dephosphorylated in response to insulin in a PI3K/Akt-dependent manner and is a novel substrate for GSK3. Priming phosphorylation of murine TRARG1 at serine 84 allows for GSK3-directed phosphorylation at serines 72, 76 and 80. A similar pattern of phosphorylation was observed in human TRARG1, suggesting that our findings are translatable to human TRARG1. Pharmacological inhibition of GSK3 increased cell surface GLUT4 in cells stimulated with a submaximal insulin dose, and this was impaired following Trarg1 knockdown, suggesting that TRARG1 acts as a GSK3-mediated regulator in GLUT4 trafficking. These data place TRARG1 within the insulin signaling network and provide insights into how GSK3 regulates GLUT4 trafficking in adipocytes.


Assuntos
Quinase 3 da Glicogênio Sintase , Fosfatidilinositol 3-Quinases , Adipócitos/metabolismo , Animais , Membrana Celular/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Insulina/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina/metabolismo
4.
Cells Dev ; 168: 203714, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34182181

RESUMO

Orchestration of a complex network of protein interactions drives clathrin-mediated endocytosis (CME). A central role for the AP2 adaptor complex beyond cargo recognition and clathrin recruitment has emerged in recent years. It is now apparent that AP2 serves as a pivotal hub for protein interactions to mediate clathrin coated pit maturation, and couples lattice formation to membrane deformation. As a key driver for clathrin assembly, AP2 complements the attenuating role of clathrin light chain subunits, which enable dynamic lattice rearrangement needed for budding. This review summarises recent insights into AP2 function with respect to CME dynamics and biophysics, and its relationship to the role of clathrin light chains in clathrin assembly.


Assuntos
Complexo 2 de Proteínas Adaptadoras , Cadeias Leves de Clatrina , Complexo 2 de Proteínas Adaptadoras/metabolismo , Clatrina/metabolismo , Cadeias Leves de Clatrina/metabolismo , Endocitose , Ligação Proteica
7.
J Cell Biol ; 219(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33053170
8.
Proc Natl Acad Sci U S A ; 117(38): 23527-23538, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32907943

RESUMO

Clathrin light chain (CLC) subunits in vertebrates are encoded by paralogous genes CLTA and CLTB, and both gene products are alternatively spliced in neurons. To understand how this CLC diversity influences neuronal clathrin function, we characterized the biophysical properties of clathrin comprising individual CLC variants for correlation with neuronal phenotypes of mice lacking either CLC-encoding gene. CLC splice variants differentially influenced clathrin knee conformation within assemblies, and clathrin with neuronal CLC mixtures was more effective in membrane deformation than clathrin with single neuronal isoforms nCLCa or nCLCb. Correspondingly, electrophysiological recordings revealed that neurons from mice lacking nCLCa or nCLCb were both defective in synaptic vesicle replenishment. Mice with only nCLCb had a reduced synaptic vesicle pool and impaired neurotransmission compared to WT mice, while nCLCa-only mice had increased synaptic vesicle numbers, restoring normal neurotransmission. These findings highlight differences between the CLC isoforms and show that isoform mixing influences tissue-specific clathrin activity in neurons, which requires their functional balance.


Assuntos
Cadeias Leves de Clatrina , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Células Cultivadas , Cadeias Leves de Clatrina/química , Cadeias Leves de Clatrina/genética , Cadeias Leves de Clatrina/metabolismo , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
9.
Curr Opin Cell Biol ; 65: 141-149, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32836101

RESUMO

Understanding of the range and mechanisms of clathrin functions has developed exponentially since clathrin's discovery in 1975. Here, newly established molecular mechanisms that regulate clathrin activity and connect clathrin pathways to differentiation, disease and physiological processes such as glucose metabolism are reviewed. Diversity and commonalities of clathrin pathways across the tree of life reveal species-specific differences enabling functional plasticity in both membrane traffic and cytokinesis. New structural information on clathrin coat formation and cargo interactions emphasises the interplay between clathrin, adaptor proteins, lipids and cargo, and how this interplay regulates quality control of clathrin's function and is compromised in infection and neurological disease. Roles for balancing clathrin-mediated cargo transport are defined in stem cell development and additional disease states.


Assuntos
Clatrina/metabolismo , Doença , Animais , Transporte Biológico , Clatrina/química , Humanos , Modelos Biológicos , Especificidade de Órgãos , Filogenia
10.
Trends Cell Biol ; 30(9): 705-719, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32620516

RESUMO

Insulin stimulates glucose transport by triggering regulated delivery of intracellular vesicles containing the GLUT4 glucose transporter to the plasma membrane. This process is defective in diseases such as type 2 diabetes (T2DM). While studies in rodent cells have been invaluable in understanding GLUT4 traffic, evolutionary plasticity must be considered when extrapolating these findings to humans. Recent work has identified species-specific distinctions in GLUT4 traffic, notably the participation of a novel clathrin isoform, CHC22, in humans but not rodents. Here, we discuss GLUT4 sorting in different species and how studies of CHC22 have identified new routes for GLUT4 trafficking. We further consider how different sorting-protein complexes relate to these routes and discuss other implications of these pathways in cell biology and disease.


Assuntos
Cadeias Pesadas de Clatrina/metabolismo , Vesículas Citoplasmáticas/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Animais , Humanos , Modelos Biológicos , Ubiquitinação
12.
13.
J Clin Endocrinol Metab ; 105(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628477

RESUMO

CONTEXT: Pre-exercise nutrient availability alters acute metabolic responses to exercise, which could modulate training responsiveness. OBJECTIVE: To assess acute and chronic effects of exercise performed before versus after nutrient ingestion on whole-body and intramuscular lipid utilization and postprandial glucose metabolism. DESIGN: (1) Acute, randomized, crossover design (Acute Study); (2) 6-week, randomized, controlled design (Training Study). SETTING: General community. PARTICIPANTS: Men with overweight/obesity (mean ± standard deviation, body mass index: 30.2 ± 3.5 kg⋅m-2 for Acute Study, 30.9 ± 4.5 kg⋅m-2 for Training Study). INTERVENTIONS: Moderate-intensity cycling performed before versus after mixed-macronutrient breakfast (Acute Study) or carbohydrate (Training Study) ingestion. RESULTS: Acute Study-exercise before versus after breakfast consumption increased net intramuscular lipid utilization in type I (net change: -3.44 ± 2.63% versus 1.44 ± 4.18% area lipid staining, P < 0.01) and type II fibers (-1.89 ± 2.48% versus 1.83 ± 1.92% area lipid staining, P < 0.05). Training Study-postprandial glycemia was not differentially affected by 6 weeks of exercise training performed before versus after carbohydrate intake (P > 0.05). However, postprandial insulinemia was reduced with exercise training performed before but not after carbohydrate ingestion (P = 0.03). This resulted in increased oral glucose insulin sensitivity (25 ± 38 vs -21 ± 32 mL⋅min-1⋅m-2; P = 0.01), associated with increased lipid utilization during exercise (r = 0.50, P = 0.02). Regular exercise before nutrient provision also augmented remodeling of skeletal muscle phospholipids and protein content of the glucose transport protein GLUT4 (P < 0.05). CONCLUSIONS: Experiments investigating exercise training and metabolic health should consider nutrient-exercise timing, and exercise performed before versus after nutrient intake (ie, in the fasted state) may exert beneficial effects on lipid utilization and reduce postprandial insulinemia.


Assuntos
Terapia por Exercício/métodos , Resistência à Insulina , Metabolismo dos Lipídeos , Síndrome Metabólica/prevenção & controle , Obesidade/terapia , Sobrepeso/terapia , Adulto , Estudos de Casos e Controles , Ingestão de Energia , Metabolismo Energético , Seguimentos , Humanos , Lipídeos/análise , Masculino , Síndrome Metabólica/epidemiologia , Nutrientes , Obesidade/fisiopatologia , Sobrepeso/fisiopatologia , Reino Unido/epidemiologia
14.
J Cell Biol ; 219(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31863584

RESUMO

Glucose transporter 4 (GLUT4) is sequestered inside muscle and fat and then released by vesicle traffic to the cell surface in response to postprandial insulin for blood glucose clearance. Here, we map the biogenesis of this GLUT4 traffic pathway in humans, which involves clathrin isoform CHC22. We observe that GLUT4 transits through the early secretory pathway more slowly than the constitutively secreted GLUT1 transporter and localize CHC22 to the ER-to-Golgi intermediate compartment (ERGIC). CHC22 functions in transport from the ERGIC, as demonstrated by an essential role in forming the replication vacuole of Legionella pneumophila bacteria, which requires ERGIC-derived membrane. CHC22 complexes with ERGIC tether p115, GLUT4, and sortilin, and downregulation of either p115 or CHC22, but not GM130 or sortilin, abrogates insulin-responsive GLUT4 release. This indicates that CHC22 traffic initiates human GLUT4 sequestration from the ERGIC and defines a role for CHC22 in addition to retrograde sorting of GLUT4 after endocytic recapture, enhancing pathways for GLUT4 sequestration in humans relative to mice, which lack CHC22.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Vias Biossintéticas , Cadeias Pesadas de Clatrina/metabolismo , Clatrina/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Transporte Proteico , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
15.
Nat Commun ; 10(1): 4974, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31672988

RESUMO

Clathrin light chains (CLCa and CLCb) are major constituents of clathrin-coated vesicles. Unique functions for these evolutionary conserved paralogs remain elusive, and their role in clathrin-mediated endocytosis in mammalian cells is debated. Here, we find and structurally characterize a direct and selective interaction between CLCa and the long isoform of the actin motor protein myosin VI, which is expressed exclusively in highly polarized tissues. Using genetically-reconstituted Caco-2 cysts as proxy for polarized epithelia, we provide evidence for coordinated action of myosin VI and CLCa at the apical surface where these proteins are essential for fission of clathrin-coated pits. We further find that myosin VI and Huntingtin-interacting protein 1-related protein (Hip1R) are mutually exclusive interactors with CLCa, and suggest a model for the sequential function of myosin VI and Hip1R in actin-mediated clathrin-coated vesicle budding.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cadeias Leves de Clatrina/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Actinas/metabolismo , Células CACO-2 , Técnicas de Cultura de Células , Cadeias Leves de Clatrina/ultraestrutura , Cistos , Endocitose , Humanos , Espectroscopia de Ressonância Magnética , Cadeias Pesadas de Miosina/ultraestrutura , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas
16.
Elife ; 82019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31159924

RESUMO

CHC22 clathrin plays a key role in intracellular membrane traffic of the insulin-responsive glucose transporter GLUT4 in humans. We performed population genetic and phylogenetic analyses of the CHC22-encoding CLTCL1 gene, revealing independent gene loss in at least two vertebrate lineages, after arising from gene duplication. All vertebrates retained the paralogous CLTC gene encoding CHC17 clathrin, which mediates endocytosis. For vertebrates retaining CLTCL1, strong evidence for purifying selection supports CHC22 functionality. All human populations maintained two high frequency CLTCL1 allelic variants, encoding either methionine or valine at position 1316. Functional studies indicated that CHC22-V1316, which is more frequent in farming populations than in hunter-gatherers, has different cellular dynamics than M1316-CHC22 and is less effective at controlling GLUT4 membrane traffic, altering its insulin-regulated response. These analyses suggest that ancestral human dietary change influenced selection of allotypes that affect CHC22's role in metabolism and have potential to differentially influence the human insulin response.


Assuntos
Cadeias Pesadas de Clatrina/genética , Cadeias Pesadas de Clatrina/metabolismo , Variação Genética , Glucose/metabolismo , Alelos , Dieta , Evolução Molecular , Humanos , Seleção Genética
17.
FEBS J ; 286(20): 4074-4085, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31199077

RESUMO

Deformation of the plasma membrane into clathrin-coated vesicles is a critical step in clathrin-mediated endocytosis and requires the orchestrated assembly of clathrin and endocytic adaptors into a membrane-associated protein coat. The individual role of these membrane-bending and curvature-stabilizing factors is subject to current debate. As such, it is unclear whether the clathrin coat itself is stiff enough to impose curvature and if so, whether this could be effectively transferred to the membrane by the linking adaptor proteins. We have recently demonstrated that clathrin alone is sufficient to form membrane buds in vitro. Here, we use atomic force microscopy to assess the contributions of clathrin and its membrane adaptor protein 2 (AP2) to clathrin coat stiffness, which determines the mechanics of vesicle formation. We found that clathrin coats are less than 10-fold stiffer than the membrane they enclose, suggesting a delicate balance between the forces harnessed from clathrin coat formation and those required for membrane bending. We observed that clathrin adaptor protein AP2 increased the stiffness of coats formed from native clathrin, but did not affect less-flexible coats formed from clathrin lacking the light chain subunits. We thus propose that clathrin light chains are important for clathrin coat flexibility and that AP2 facilitates efficient cargo sequestration during coated vesicle formation by modulating clathrin coat stiffness.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismo , Vesículas Revestidas por Clatrina/química , Vesículas Revestidas por Clatrina/metabolismo , Clatrina/metabolismo , Endocitose , Animais , Ligação Proteica , Sus scrofa
18.
J Biol Chem ; 292(51): 20834-20844, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29097553

RESUMO

Clathrins are cytoplasmic proteins that play essential roles in endocytosis and other membrane traffic pathways. Upon recruitment to intracellular membranes, the canonical clathrin triskelion assembles into a polyhedral protein coat that facilitates vesicle formation and captures cargo molecules for transport. The triskelion is formed by trimerization of three clathrin heavy-chain subunits. Most vertebrates have two isoforms of clathrin heavy chains, CHC17 and CHC22, generating two clathrins with distinct cellular functions. CHC17 forms vesicles at the plasma membrane for receptor-mediated endocytosis and at the trans-Golgi network for organelle biogenesis. CHC22 plays a key role in intracellular targeting of the insulin-regulated glucose transporter 4 (GLUT4), accumulates at the site of GLUT4 sequestration during insulin resistance, and has also been implicated in neuronal development. Here, we demonstrate that CHC22 and CHC17 share morphological features, in that CHC22 forms a triskelion and latticed vesicle coats. However, cellular CHC22-coated vesicles were distinct from those formed by CHC17. The CHC22 coat was more stable to pH change and was not removed by the enzyme complex that disassembles the CHC17 coat. Moreover, the two clathrins were differentially recruited to membranes by adaptors, and CHC22 did not support vesicle formation or transferrin endocytosis at the plasma membrane in the presence or absence of CHC17. Our findings provide biochemical evidence for separate regulation and distinct functional niches for CHC17 and CHC22 in human cells. Furthermore, the greater stability of the CHC22 coat relative to the CHC17 coat may be relevant to its excessive accumulation with GLUT4 during insulin resistance.


Assuntos
Cadeias Pesadas de Clatrina/química , Cadeias Pesadas de Clatrina/metabolismo , Sequência de Aminoácidos , Cadeias Pesadas de Clatrina/genética , Vesículas Revestidas por Clatrina/metabolismo , Vesículas Revestidas por Clatrina/ultraestrutura , Endocitose , Transportador de Glucose Tipo 4/metabolismo , Células HeLa , Humanos , Resistência à Insulina , RNA Interferente Pequeno/genética , Homologia de Sequência de Aminoácidos , Transferrina/metabolismo
19.
Proc Natl Acad Sci U S A ; 113(35): 9816-21, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27540116

RESUMO

Clathrin, a cytosolic protein composed of heavy and light chain subunits, assembles into a vesicle coat, controlling receptor-mediated endocytosis. To establish clathrin light chain (CLC) function in vivo, we engineered mice lacking CLCa, the major CLC isoform in B lymphocytes, generating animals with CLC-deficient B cells. In CLCa-null mice, the germinal centers have fewer B cells, and they are enriched for IgA-producing cells. This enhanced switch to IgA production in the absence of CLCa was attributable to increased transforming growth factor ß receptor 2 (TGFßR2) signaling resulting from defective endocytosis. Internalization of C-X-C chemokine receptor 4 (CXCR4), but not CXCR5, was affected in CLCa-null B cells, and CLC depletion from cell lines affected endocytosis of the δ-opioid receptor, but not the ß2-adrenergic receptor, defining a role for CLCs in the uptake of a subset of signaling receptors. This instance of clathrin subunit deletion in vertebrates demonstrates that CLCs contribute to clathrin's role in vivo by influencing cargo selectivity, a function previously assigned exclusively to adaptor molecules.


Assuntos
Linfócitos B/imunologia , Cadeias Leves de Clatrina/genética , Endocitose/imunologia , Deleção de Genes , Switching de Imunoglobulina , Animais , Linfócitos B/patologia , Córtex Cerebral/citologia , Córtex Cerebral/imunologia , Cadeias Leves de Clatrina/imunologia , Regulação da Expressão Gênica , Humanos , Imunoglobulina A/biossíntese , Imunoglobulina A/genética , Fígado/citologia , Fígado/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/citologia , Miocárdio/imunologia , Especificidade de Órgãos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/imunologia , Receptores CXCR4/genética , Receptores CXCR4/imunologia , Receptores Opioides delta/genética , Receptores Opioides delta/imunologia , Receptores de Fatores de Crescimento Transformadores beta/agonistas , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/imunologia , Baço/citologia , Baço/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia
20.
J Immunol ; 195(8): 3725-36, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26371256

RESUMO

Chimpanzees have orthologs of the six fixed, functional human MHC class I genes. But, in addition, the chimpanzee has a seventh functional gene, Patr-AL, which is not polymorphic but contributes substantially to population diversity by its presence on only 50% of MHC haplotypes. The ancestral AL gene emerged long before the separation of human and chimpanzee ancestors and then subsequently and specifically lost function during human evolution, but was maintained in chimpanzees. Patr-AL is an alloantigen that participates in negative and positive selection of the T cell repertoire. The three-dimensional structure and the peptide-binding repertoire of Patr-AL and HLA-A*02 are surprisingly similar. In contrast, the expression of these two molecules is very different, as shown using specific mAbs and polyclonal Abs made against Patr-AL. Peripheral blood cells and B cell lines express low levels of Patr-AL at the cell surface. Higher levels are seen for 221-cell transfectants expressing Patr-AL, but in these cells a large majority of Patr-AL molecules are retained in the early compartments of the secretory pathway: mainly the endoplasmic reticulum, but also cis-Golgi. Replacing the cytoplasmic tail of Patr-AL with that of HLA-A*02 increased the cell-surface expression of Patr-AL substantially. Four substitutions distinguish the Patr-AL and HLA-A*02 cytoplasmic tails. Systematic mutagenesis showed that each substitution contributes changes in cell-surface expression. The combination of residues present in Patr-AL appears unique, but each individual residue is present in other primate MHC class I molecules, notably MHC-E, the most ancient of the functional human MHC class I molecules.


Assuntos
Linfócitos B/imunologia , Membrana Celular/imunologia , Retículo Endoplasmático/imunologia , Regulação da Expressão Gênica/imunologia , Complexo de Golgi/imunologia , Antígeno HLA-A2/imunologia , Animais , Linfócitos B/citologia , Linhagem Celular Transformada , Membrana Celular/genética , Retículo Endoplasmático/genética , Regulação da Expressão Gênica/genética , Complexo de Golgi/genética , Antígeno HLA-A2/genética , Humanos , Pan troglodytes , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...