Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 62(1-2): 108-17, 2001 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-11693361

RESUMO

UV-B absorbance and UV-B absorbing compounds (UACs) of the pollen of Vicia faba, Betula pendula, Helleborus foetidus and Pinus sylvestris were studied. Sequential extraction demonstrated considerable UV-B absorbance both in the soluble (acid methanol) and insoluble sporopollenin (acetolysis resistant residue) fractions of UACs, while the wall-bound fraction of UACs was small. The UV-B absorbance of the soluble and sporopollenin fraction of pollen of Vicia faba plants exposed to enhanced UV-B (10 kJ m(-2) day(-1) UV-B(BE)) was higher than that of plants that received 0 kJ m(-2) day(-1) UV-B(BB). Pyrolysis gas chromatography-mass spectrometry (py-GC-MS) analysis of pollen demonstrated that p-coumaric acid and ferulic acid formed part of the sporopollenin fraction of the pollen. The amount of these aromatic monomers in the sporopollenin of Vicia faba appeared to increase in response to enhanced UV-B (10 kJ m(-2) day(-1) UV-B(BE)). The detection limit of pyGC-MS was sufficiently low to quantify these phenolic acids in ten pollen grains of Betula and Pinus. The experimental data presented provide evidence for the possibility that polyphenolic compounds in pollen of plants are indicators of solar UV-B and may be applied as a new proxy for the reconstruction of historic variation in solar UV-B levels.


Assuntos
Ácidos Cumáricos/efeitos da radiação , Pólen/efeitos da radiação , Raios Ultravioleta , Pólen/fisiologia , Pólen/ultraestrutura , Propionatos , Rosales/fisiologia , Rosales/efeitos da radiação
2.
Environ Pollut ; 82(1): 13-22, 1993.
Artigo em Inglês | MEDLINE | ID: mdl-15091794

RESUMO

The aim of the research reported here was to investigate the relation between heavy metal concentrations in salt marsh plants, extractability of the metals from soil and some soil characteristics. In April 1987, Spartina anglica and Aster tripolium plants and soil were collected from four salt marshes along the Dutch coast. The redox potential of the soil between the roots of the plants and at bare sites was measured. Soil samples were oven-dried and analyzed for chloride concentration, pH, fraction of soil particles smaller than 63 microm (f < 63 microm), loss on ignition (LOI) and ammonium acetate and hydrochloric acid extractable Cd, Cu and Zn concentrations. The roots and shoots of the plants were analyzed for Cd, Cu and Zn. Because drying of the soil prior to chemical analysis might have changed the chemical speciation of the metals, and therefore the outcome of the ammonium acetate extraction, a second survey was performed in October 1990. In this survey A. tripolium plants and soil were collected from two salt marshes. Fresh and matched oven-dried soil samples were analyzed for water, ammonium acetate and diethylene triaminepentaacetic acid (DTPA) extractable Cd, Cu and Zn concentrations. The soil samples were also analyzed for f < 63 microm, LOI and total (HNO(3)/HCl digestion) metal concentrations. Soil metal concentrations were correlated with LOI. Drying prior to analysis of the soil had a significant effect on the extractability of the metals with water, ammonium acetate or DTPA. Plant metal concentrations significantly correlated only with some extractable metal concentrations determined in dried soil samples. However, these correlations were not consistently better than with total metal concentrations in the soil. It was concluded that extractions of metals from soil with water, ammonium acetate or DTPA are not better predictors for metal concentrations in salt marsh plants than total metal concentrations, and that a major part of the variation in metal concentrations in the plants cannot be explained by variation in soil composition.

3.
Environ Pollut ; 72(3): 175-89, 1991.
Artigo em Inglês | MEDLINE | ID: mdl-15092100

RESUMO

In autumn 1986, plants and soil were collected from the lower and the higher salt marsh zones of salt marshes along the Dutch coast. The main purpose was to get an overview of Zn, Cu and Cd concentrations in six dominant species of salt marsh plants. The roots and shoots of the plants were analysed for Zn, Cu and Cd. The highest heavy metal concentrations were found in plants collected from salt marshes near harbour areas and/or that are known to receive contaminated fluvial sediment. Dicotyledonous plant species tended to have similar heavy metal concentrations in roots and shoots, whereas in monocotyledonous species the concentrations in the roots were two to three times higher than in the shoots. Differences in accumulation in the roots between elements and between plant species were found. Cd was accumulated more than Zn or Cu. Triglochin maritima shows a low Cd uptake by roots, whereas Spartina anglica and Scirpus maritimus tend to accumulate it. The fraction of soil particles smaller than 63 microm, loss on ignition and Zn, Cu and Cd concentrations were determined in soil samples. The highest Zn, Cu and Cd concentrations in the soil were found at salt marshes in the Western Scheldt area and were nine, five and 20 times higher than background levels, respectively.

4.
New Phytol ; 111(2): 309-317, 1989 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33874255

RESUMO

The iron plaque on roots of Aster tripolium L. growing in waterlogged salt marsh soil adsorbed appreciable amounts of Zn and Cu, with maximum Zn/Fe and Cu/Fe ratios of 0.1 When concentrations of Zn or Cu adsorbed in the iron plaque are expressed as mg metal kg-1 FeOOH (assuming that iron plaque consists mainly of FeOOH), the Zn and Cu concentrations of the iron plaque was up to 680 and up to 2000 times higher than in the surrounding sediment, respectively. The Zn concentration in red roots (with iron plaque) was higher than in white roots (without iron plaque). Zn concentrations in field sampled roots were correlated with the amount of Zn on the roots and the Zn concentration in the soil, whereas Cu concentrations in the roots were only significantly correlated to the Cu concentration in the soil. In vitro experiments showed that red roots take up more Zn than white roots. Measurement of Zn uptake by excised roots showed that the uptake of Zn into the xylem fluid was significantly higher in roots with 500-2000 nmol Fe cm-2 on the root surface compared to roots with less than 500 or more than 2000 nmol Fe cm-2 on the root surface. The results indicate that iron plaque enhances uptake of Zn by the roots but may act as a barrier when large amounts of Fe are deposited on the root surface. The role of the iron plaque on roots of salt marsh plants growing in soil contaminated with heavy metals is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...