Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 608(7922): 287-292, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948709

RESUMO

Particle accelerators and storage rings have been transformative instruments of discovery, and, for many applications, innovations in particle-beam cooling have been a principal driver of that success1. Stochastic cooling (SC), one of the most important conceptual and technological advances in this area2-6, cools a beam through granular sampling and correction of its phase-space structure, thus bearing resemblance to a 'Maxwell's demon'. The extension of SC from the microwave regime up to optical frequencies and bandwidths has long been pursued, as it could increase the achievable cooling rates by three to four orders of magnitude and provide a powerful tool for future accelerators. First proposed nearly 30 years ago, optical stochastic cooling (OSC) replaces the conventional microwave elements of SC with optical-frequency analogues and is, in principle, compatible with any species of charged-particle beam7,8. Here we describe a demonstration of OSC in a proof-of-principle experiment at the Fermi National Accelerator Laboratory's Integrable Optics Test Accelerator9,10. The experiment used 100-MeV electrons and a non-amplified configuration of OSC with a radiation wavelength of 950 nm, and achieved strong, simultaneous cooling of the beam in all degrees of freedom. This realization of SC at optical frequencies serves as a foundation for more advanced experiments with high-gain optical amplification, and advances opportunities for future operational OSC systems with potential benefit to a broad user community in the accelerator-based sciences.

2.
Phys Rev Lett ; 116(15): 151806, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27127961

RESUMO

We report results from the first search for ν_{µ}→ν_{e} transitions by the NOvA experiment. In an exposure equivalent to 2.74×10^{20} protons on target in the upgraded NuMI beam at Fermilab, we observe 6 events in the Far Detector, compared to a background expectation of 0.99±0.11(syst) events based on the Near Detector measurement. A secondary analysis observes 11 events with a background of 1.07±0.14(syst). The 3.3σ excess of events observed in the primary analysis disfavors 0.1π<δ_{CP}<0.5π in the inverted mass hierarchy at the 90% C.L.

3.
Phys Rev Lett ; 114(23): 231302, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26196790

RESUMO

New data are reported from the operation of a 2 liter C3F8 bubble chamber in the SNOLAB underground laboratory, with a total exposure of 211.5 kg days at four different energy thresholds below 10 keV. These data show that C3F8 provides excellent electron-recoil and alpha rejection capabilities at very low thresholds. The chamber exhibits an electron-recoil sensitivity of <3.5×10(-10) and an alpha rejection factor of >98.2%. These data also include the first observation of a dependence of acoustic signal on alpha energy. Twelve single nuclear recoil event candidates were observed during the run. The candidate events exhibit timing characteristics that are not consistent with the hypothesis of a uniform time distribution, and no evidence for a dark matter signal is claimed. These data provide the most sensitive direct detection constraints on WIMP-proton spin-dependent scattering to date, with significant sensitivity at low WIMP masses for spin-independent WIMP-nucleon scattering.


Assuntos
Fluorocarbonos/química , Modelos Teóricos , Acústica/instrumentação , Algoritmos , Nêutrons
4.
Phys Rev Lett ; 106(2): 021303, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21405218

RESUMO

Data from the operation of a bubble chamber filled with 3.5 kg of CF3I in a shallow underground site are reported. An analysis of ultrasound signals accompanying bubble nucleations confirms that alpha decays generate a significantly louder acoustic emission than single nuclear recoils, leading to an efficient background discrimination. Three dark matter candidate events were observed during an effective exposure of 28.1 kg day, consistent with a neutron background. This observation provides strong direct detection constraints on weakly interacting massive particle (WIMP)-proton spin-dependent scattering for WIMP masses >20 GeV/c2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...