Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(3): e0121023, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319076

RESUMO

Libraries composed of licensed drugs represent a vast repertoire of molecules modulating physiological processes in humans, providing unique opportunities for the discovery of host-targeting antivirals. We screened the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) repurposing library with approximately 12,000 molecules for broad-spectrum coronavirus antivirals and discovered 134 compounds inhibiting an alphacoronavirus and mapping to 58 molecular target categories. Dominant targets included the 5-hydroxytryptamine receptor, the dopamine receptor, and cyclin-dependent kinases. Gene knock-out of the drugs' host targets including cathepsin B and L (CTSB/L; VBY-825), the aryl hydrocarbon receptor (AHR; Phortress), the farnesyl-diphosphate farnesyltransferase 1 (FDFT1; P-3622), and the kelch-like ECH-associated protein 1 (KEAP1; Omaveloxolone), significantly modulated HCoV-229E infection, providing evidence that these compounds inhibited the virus through acting on their respective host targets. Counter-screening of all 134 primary compound candidates with SARS-CoV-2 and validation in primary cells identified Phortress, an AHR activating ligand, P-3622-targeting FDFT1, and Omaveloxolone, which activates the NFE2-like bZIP transcription factor 2 (NFE2L2) by liberating it from its endogenous inhibitor KEAP1, as antiviral candidates for both an Alpha- and a Betacoronavirus. This study provides an overview of HCoV-229E repurposing candidates and reveals novel potentially druggable viral host dependency factors hijacked by diverse coronaviruses.


Assuntos
Coronavirus Humano 229E , Infecções por Coronavirus , Tiazóis , Triterpenos , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Reposicionamento de Medicamentos , Fator 2 Relacionado a NF-E2/metabolismo , Coronavirus Humano 229E/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico
2.
FASEB J ; 37(12): e23279, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37902583

RESUMO

The pathogenicity elicited by Staphylococcus (S.) aureus, one of the best-studied bacteria, in the intestine is not well understood. Recently, we demonstrated that S. aureus infection induces alterations in membrane composition that are associated with concomitant impairment of intestinal function. Here, we used two organoid models, induced pluripotent stem cell (iPSC)-derived intestinal organoids and colonic intestinal stem cell-derived intestinal organoids (colonoids), to examine how sterol metabolism and oxygen levels change in response to S. aureus infection. HPLC quantification showed differences in lipid homeostasis between infected and uninfected cells, characterized by a remarkable decrease in total cellular cholesterol. As the altered sterol metabolism is often due to oxidative stress response, we next examined intracellular and extracellular oxygen levels. Three different approaches to oxygen measurement were applied: (1) cell-penetrating nanoparticles to quantify intracellular oxygen content, (2) sensor plates to quantify extracellular oxygen content in the medium, and (3) a sensor foil system for oxygen distribution in organoid cultures. The data revealed significant intracellular and extracellular oxygen drop after infection in both intestinal organoid models as well as in Caco-2 cells, which even 48 h after elimination of extracellular bacteria, did not return to preinfection oxygen levels. In summary, we show alterations in sterol metabolism and intra- and extracellular hypoxia as a result of S. aureus infection. These results will help understand the cellular stress responses during sustained bacterial infections in the intestinal epithelium.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Oxigênio , Células CACO-2 , Intestinos , Organoides , Colesterol
3.
Int J Mol Sci ; 23(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35682834

RESUMO

Canine histiocytic sarcoma (HS) represents a neoplasia with poor prognosis. Due to the high metastatic rate of HS, there is urgency to improve treatment options and to prevent tumor metastases. Canine distemper virus (CDV) is a single-stranded negative-sense RNA (ssRNA (-)) virus with potentially oncolytic properties. Moreover, vasostatin and granulocyte-macrophage colony-stimulating factor (GM-CSF) are attractive molecules in cancer therapy research because of their anti-angiogenetic properties and potential modulation of the tumor microenvironment. In the present study, an in vitro characterization of two genetically engineered viruses based on the CDV strain Onderstepoort (CDV-Ond), CDV-Ondneon-vasostatin and CDV-Ondneon-GM-CSF was performed. Canine histiocytic sarcoma cells (DH82 cells) were persistently infected with CDV-Ond, CDV-Ondneon, CDV-Ondneon-vasostatin and CDV-Ondneon-GM-CSF and characterized on a molecular and protein level regarding their vasostatin and GM-CSF production. Interestingly, DH82 cells persistently infected with CDV-Ondneon-vasostatin showed a significantly increased number of vasostatin mRNA transcripts. Similarly, DH82 cells persistently infected with CDV-Ondneon-GM-CSF displayed an increased number of GM-CSF mRNA transcripts mirrored on the protein level as confirmed by immunofluorescence and Western blot. In summary, modified CDV-Ond strains expressed GM-CSF and vasostatin, rendering them promising candidates for the improvement of oncolytic virotherapies, which should be further detailed in future in vivo studies.


Assuntos
Vírus da Cinomose Canina , Sarcoma Histiocítico , Animais , Calreticulina , Linhagem Celular , Vírus da Cinomose Canina/genética , Cães , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Sarcoma Histiocítico/genética , Neônio , Fragmentos de Peptídeos , Infecção Persistente , RNA Mensageiro , Microambiente Tumoral
4.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328617

RESUMO

Formation of neutrophil extracellular traps (NETs) is a two-faced innate host defense mechanism, which, on the one hand, can counteract microbial infections, but on the other hand, can contribute to massive detrimental effects on the host. Cholesterol depletion from the cellular membrane by Methyl-ß-cyclodextrin (MßCD) is known as one of the processes initiating NET formation. Since neutrophils mainly act in an inflammatory environment with decreased, so-called hypoxic, oxygen conditions, we aimed to study the effect of oxygen and the oxygen stress regulator hypoxia-inducible factor (HIF)-1α on cholesterol-dependent NET formation. Thus, murine bone marrow-derived neutrophils from wild-type and HIF-knockout mice or human neutrophils were stimulated with MßCD under normoxic (21% O2) compared to hypoxic (1% O2) conditions, and the formation of NETs were studied by immunofluorescence microscopy. We found significantly induced NET formation after treatment with MßCD in murine neutrophils derived from wild-type as well as HIF-1α KO mice at both hypoxic (1% O2) as well as normoxic (21% O2) conditions. Similar observations were made in freshly isolated human neutrophils after stimulation with MßCD or statins, which block the HMG-CoA reductase as the key enzyme in the cholesterol metabolism. HPLC was used to confirm the reduction of cholesterol in treated neutrophils. In summary, we were able to show that NET formation via MßCD or statin-treatment is oxygen and HIF-1α independent.


Assuntos
Armadilhas Extracelulares , Animais , Colesterol/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Neutrófilos/metabolismo , Oxigênio/metabolismo
5.
BMC Bioinformatics ; 22(1): 572, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837942

RESUMO

BACKGROUND: Viral infections are causing significant morbidity and mortality worldwide. Understanding the interaction patterns between a particular virus and human proteins plays a crucial role in unveiling the underlying mechanism of viral infection and pathogenesis. This could further help in prevention and treatment of virus-related diseases. However, the task of predicting protein-protein interactions between a new virus and human cells is extremely challenging due to scarce data on virus-human interactions and fast mutation rates of most viruses. RESULTS: We developed a multitask transfer learning approach that exploits the information of around 24 million protein sequences and the interaction patterns from the human interactome to counter the problem of small training datasets. Instead of using hand-crafted protein features, we utilize statistically rich protein representations learned by a deep language modeling approach from a massive source of protein sequences. Additionally, we employ an additional objective which aims to maximize the probability of observing human protein-protein interactions. This additional task objective acts as a regularizer and also allows to incorporate domain knowledge to inform the virus-human protein-protein interaction prediction model. CONCLUSIONS: Our approach achieved competitive results on 13 benchmark datasets and the case study for the SARS-COV-2 virus receptor. Experimental results show that our proposed model works effectively for both virus-human and bacteria-human protein-protein interaction prediction tasks. We share our code for reproducibility and future research at https://git.l3s.uni-hannover.de/dong/multitask-transfer .


Assuntos
COVID-19 , Vírus , Algoritmos , Humanos , Aprendizado de Máquina , Reprodutibilidade dos Testes , SARS-CoV-2
6.
iScience ; 24(12): 103469, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34812415

RESUMO

Clinical data of patients suffering from COVID-19 indicates that statin therapy, used to treat hypercholesterolemia, is associated with a better disease outcome. Whether statins directly affect virus replication or influence the clinical outcome through modulation of immune responses is unknown. We therefore investigated the effect of statins on SARS-CoV-2 infection in human lung cells and found that only fluvastatin inhibited low and high pathogenic coronaviruses in vitro and ex vivo in a dose-dependent manner. Quantitative proteomics revealed that fluvastatin and other tested statins modulated the cholesterol synthesis pathway without altering innate antiviral immune responses in infected lung epithelial cells. However, fluvastatin treatment specifically downregulated proteins that modulate protein translation and viral replication. Collectively, these results support the notion that statin therapy poses no additional risk to individuals exposed to SARS-CoV-2 and that fluvastatin has a moderate beneficial effect on SARS-CoV-2 infection of human lung cells.

7.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638978

RESUMO

Natural or experimental infection of domestic cats and virus transmission from humans to captive predatory cats suggest that felids are highly susceptible to SARS-CoV-2 infection. However, it is unclear which cells and compartments of the respiratory tract are infected. To address this question, primary cell cultures derived from the nose, trachea, and lungs of cat and lion were inoculated with SARS-CoV-2. Strong viral replication was observed for nasal mucosa explants and tracheal air-liquid interface cultures, whereas replication in lung slices was less efficient. Infection was mainly restricted to epithelial cells and did not cause major pathological changes. Detection of high ACE2 levels in the nose and trachea but not lung further suggests that susceptibility of feline tissues to SARS-CoV-2 correlates with ACE2 expression. Collectively, this study demonstrates that SARS-CoV-2 can efficiently replicate in the feline upper respiratory tract ex vivo and thus highlights the risk of SARS-CoV-2 spillover from humans to felids.


Assuntos
COVID-19/veterinária , Gatos/virologia , Leões/virologia , Enzima de Conversão de Angiotensina 2/análise , Animais , COVID-19/transmissão , COVID-19/virologia , Doenças do Gato/transmissão , Doenças do Gato/virologia , Células Cultivadas , Suscetibilidade a Doenças , Humanos , Pulmão/citologia , Pulmão/virologia , Nariz/citologia , Nariz/virologia , SARS-CoV-2/isolamento & purificação , Traqueia/citologia , Traqueia/virologia
8.
PLoS One ; 16(8): e0255335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34347801

RESUMO

The SARS-CoV-2 coronavirus has led to a pandemic with millions of people affected. The present study finds that risk-factors for severe COVID-19 disease courses, i.e. male sex, older age and sedentary life style are associated with higher prostaglandin E2 (PGE2) serum levels in blood samples from unaffected subjects. In COVID-19 patients, PGE2 blood levels are markedly elevated and correlate positively with disease severity. SARS-CoV-2 induces PGE2 generation and secretion in infected lung epithelial cells by upregulating cyclo-oxygenase (COX)-2 and reducing the PG-degrading enzyme 15-hydroxyprostaglandin-dehydrogenase. Also living human precision cut lung slices (PCLS) infected with SARS-CoV-2 display upregulated COX-2. Regular exercise in aged individuals lowers PGE2 serum levels, which leads to increased Paired-Box-Protein-Pax-5 (PAX5) expression, a master regulator of B-cell survival, proliferation and differentiation also towards long lived memory B-cells, in human pre-B-cell lines. Moreover, PGE2 levels in serum of COVID-19 patients lowers the expression of PAX5 in human pre-B-cell lines. The PGE2 inhibitor Taxifolin reduces SARS-CoV-2-induced PGE2 production. In conclusion, SARS-CoV-2, male sex, old age, and sedentary life style increase PGE2 levels, which may reduce the early anti-viral defense as well as the development of immunity promoting severe disease courses and multiple infections. Regular exercise and Taxifolin treatment may reduce these risks and prevent severe disease courses.


Assuntos
COVID-19/patologia , Dinoprostona/sangue , Imunidade , Adolescente , Adulto , Animais , COVID-19/sangue , COVID-19/imunologia , Estudos de Casos e Controles , Células Cultivadas , Chlorocebus aethiops , Dinoprostona/farmacologia , Dinoprostona/fisiologia , Progressão da Doença , Feminino , Humanos , Imunidade/efeitos dos fármacos , Imunidade/fisiologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Células Vero , Adulto Jovem
9.
Cells ; 10(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209751

RESUMO

The HCV replication cycle is tightly associated with host lipid metabolism: Lipoprotein receptors SR-B1 and LDLr promote entry of HCV, replication is associated with the formation of lipid-rich membranous organelles and infectious particle assembly highjacks the very­low-density lipoprotein (VLDL) secretory pathway. Hence, medications that interfere with the lipid metabolism of the cell, such as statins, may affect HCV infection. Here, we study the interplay between lipoprotein receptors, lipid homeostasis, and HCV infection by genetic and pharmacological interventions. We found that individual ablation of the lipoprotein receptors SR­B1 and LDLr did not drastically affect HCV entry, replication, or infection, but double lipoprotein receptor knock-outs significantly reduced HCV infection. Furthermore, we could show that this effect was neither due to altered expression of additional HCV entry factors nor caused by changes in cellular cholesterol content. Strikingly, whereas lipid­lowering drugs such as simvastatin or fenofibrate did not affect HCV entry or infection of immortalized hepatoma cells expressing SR-B1 and/or LDLr or primary human hepatocytes, ablation of these receptors rendered cells more susceptible to these drugs. Finally, we observed no significant differences between statin users and control groups with regards to HCV viral load in a cohort of HCV infected patients before and during HCV antiviral treatment. Interestingly, statin treatment, which blocks the mevalonate pathway leading to decreased cholesterol levels, was associated with mild but appreciable lower levels of liver damage markers before HCV therapy. Overall, our findings confirm the role of lipid homeostasis in HCV infection and highlight the importance of the mevalonate pathway in the HCV replication cycle.


Assuntos
Hepacivirus/patogenicidade , Hipolipemiantes/farmacologia , Receptores de Lipoproteínas/metabolismo , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Linhagem Celular , Células Cultivadas , Colesterol/metabolismo , Estudos de Coortes , Genótipo , Glicoproteínas/metabolismo , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepatite C/patologia , Hepatite C/virologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Hepatócitos/virologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Receptores de Lipoproteínas/deficiência , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
10.
Front Immunol ; 12: 581786, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717065

RESUMO

Cholesterol is essential for building and maintaining cell membranes and is critical for several steps in the replication cycle of viruses, especially for enveloped viruses. In mammalian cells virus infections lead to the accumulation of the oxysterol 25-hydroxycholesterol (25HC), an antiviral factor, which is produced from cholesterol by the cholesterol 25 hydroxylase (CH25H). Antiviral responses based on CH25H are not well studied in fish. Therefore, in the present study putative genes encoding for CH25H were identified and amplified in common carp and rainbow trout cells and an HPLC-MS method was applied for determination of oxysterol concentrations in these cells under virus infection. Our results give some evidence that the activation of CH25H could be a part of the antiviral response against a broad spectrum of viruses infecting fish, in both common carp and rainbow trout cells in vitro. Quantification of oxysterols showed that fibroblastic cells are capable of producing 25HC and its metabolite 7α,25diHC. The oxysterol 25HC showed an antiviral activity by blocking the entry of cyprinid herpesvirus 3 (CyHV-3) into KFC cells, but not spring viremia of carp virus (SVCV) or common carp paramyxovirus (Para) in the same cells, or viral haemorrhagic septicaemia virus (VHSV) and infectious pancreatic necrosis virus (IPNV) into RTG-2 cells. Despite the fact that the CH25H based antiviral response coincides with type I IFN responses, the stimulation of salmonid cells with recombinant type I IFN proteins from rainbow trout could not induce ch25h_b gene expression. This provided further evidence, that the CH25H-response is not type I IFN dependent. Interestingly, the susceptibility of CyHV-3 to 25HC is counteracted by a downregulation of the expression of the ch25h_b gene in carp fibroblasts during CyHV-3 infection. This shows a unique interplay between oxysterol based immune responses and immunomodulatory abilities of certain viruses.


Assuntos
Antivirais/imunologia , Herpesviridae/imunologia , Hidroxicolesteróis/imunologia , Rhabdoviridae/imunologia , Animais , Antivirais/metabolismo , Carpas/genética , Carpas/metabolismo , Carpas/virologia , Linhagem Celular , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/imunologia , Herpesviridae/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Hidroxicolesteróis/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Rhabdoviridae/fisiologia , Internalização do Vírus , Replicação Viral/imunologia
11.
Nutrients ; 12(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352829

RESUMO

BACKGROUND: The mechanism of action of the ketogenic diet (KD), an effective treatment for pharmacotherapy refractory epilepsy, is not fully elucidated. The present study examined the effects of two metabolites accumulating under KD-beta-hydroxybutyrate (ßHB) and decanoic acid (C10) in hippocampal murine (HT22) neurons. METHODS: A mouse HT22 hippocampal neuronal cell line was used in the present study. Cellular lipids were analyzed in cell cultures incubated with high (standard) versus low glucose supplemented with ßHB or C10. Cellular cholesterol was analyzed using HPLC, while phospholipids and sphingomyelin (SM) were analyzed using HPTLC. RESULTS: HT22 cells showed higher cholesterol, but lower SM levels in the low glucose group without supplements as compared to the high glucose groups. While cellular cholesterol was reduced in both ßHB- and C10-incubated cells, phospholipids were significantly higher in C10-incubated neurons. Ratios of individual phospholipids to cholesterol were significantly higher in ßHB- and C10-incubated neurons as compared to controls. CONCLUSION: Changes in the ratios of individual phospholipids to cholesterol in HT22 neurons suggest a possible alteration in the composition of the plasma membrane and organelle membranes, which may provide insight into the working mechanism of KD metabolites ßHB and C10.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Colesterol/metabolismo , Ácidos Decanoicos/metabolismo , Dieta Cetogênica , Hipocampo/metabolismo , Neurônios/metabolismo , Fosfolipídeos/metabolismo , Ácido 3-Hidroxibutírico/análise , Animais , Restrição Calórica , Linhagem Celular , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/análise , Ácidos Decanoicos/análise , Glucose/metabolismo , Hipocampo/química , Hipocampo/citologia , Camundongos , Neurônios/química , Fosfatidilserinas/análise , Fosfatidilserinas/metabolismo , Fosfolipídeos/análise , Esfingomielinas/análise , Esfingomielinas/metabolismo
12.
J Cell Mol Med ; 24(16): 9332-9348, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32627957

RESUMO

Sarcomas especially of histiocytic origin often possess a poor prognosis and response to conventional therapies. Interestingly, tumours undergoing mesenchymal to epithelial transition (MET) are often associated with a favourable clinical outcome. This process is characterized by an increased expression of epithelial markers leading to a decreased invasion and metastatic rate. Based on the failure of conventional therapies, viral oncolysis might represent a promising alternative with canine distemper virus (CDV) as a possible candidate. This study hypothesizes that a CDV infection of canine histiocytic sarcoma cells (DH82 cells) triggers the MET process leading to a decreased cellular motility. Immunofluorescence and immunoblotting were used to investigate the expression of epithelial and mesenchymal markers followed by scratch assay and an invasion assay as functional confirmation. Furthermore, microarray data were analysed for genes associated with the MET process, invasion and angiogenesis. CDV-infected cells exhibited an increased expression of epithelial markers such as E-cadherin and cytokeratin 8 compared to controls, indicating a MET process. This was accompanied by a reduced cell motility and invasiveness. Summarized, these results suggest that CDV infection of DH82 cells triggers the MET process by an increased expression of epithelial markers resulting in a decreased cell motility in vitro.


Assuntos
Movimento Celular , Vírus da Cinomose Canina/patogenicidade , Cinomose/complicações , Doenças do Cão/prevenção & controle , Transição Epitelial-Mesenquimal , Sarcoma Histiocítico/prevenção & controle , Neovascularização Patológica/prevenção & controle , Animais , Cinomose/virologia , Doenças do Cão/metabolismo , Doenças do Cão/virologia , Cães , Sarcoma Histiocítico/metabolismo , Sarcoma Histiocítico/veterinária , Sarcoma Histiocítico/virologia , Técnicas In Vitro , Análise em Microsséries , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/virologia
13.
J Clin Med ; 9(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252429

RESUMO

GM1-gangliosidosis is caused by a reduced activity of ß-galactosidase (Glb1), resulting in intralysosomal accumulations of GM1. The aim of this study was to reveal the pathogenic mechanisms of GM1-gangliosidosis in a new Glb1 knockout mouse model. Glb1-/- mice were analyzed clinically, histologically, immunohistochemically, electrophysiologically and biochemically. Morphological lesions in the central nervous system were already observed in two-month-old mice, whereas functional deficits, including ataxia and tremor, did not start before 3.5-months of age. This was most likely due to a reduced membrane resistance as a compensatory mechanism. Swollen neurons exhibited intralysosomal storage of lipids extending into axons and amyloid precursor protein positive spheroids. Additionally, axons showed a higher kinesin and lower dynein immunoreactivity compared to wildtype controls. Glb1-/- mice also demonstrated loss of phosphorylated neurofilament positive axons and a mild increase in non-phosphorylated neurofilament positive axons. Moreover, marked astrogliosis and microgliosis were found, but no demyelination. In addition to the main storage material GM1, GA1, sphingomyelin, phosphatidylcholine and phosphatidylserine were elevated in the brain. In summary, the current Glb1-/- mice exhibit a so far undescribed axonopathy and a reduced membrane resistance to compensate the functional effects of structural changes. They can be used for detailed examinations of axon-glial interactions and therapy trials of lysosomal storage diseases.

14.
Int J Mol Sci ; 21(6)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204338

RESUMO

Niemann-Pick Type C (NPC) is an autosomal recessive lysosomal storage disease leading to progressive neurodegeneration. Mutations in the NPC1 gene, which accounts for 95% of the cases, lead to a defect in intra-lysosomal trafficking of cholesterol and an accumulation of storage material including cholesterol and sphingolipids in the endo-lysosomal system. Symptoms are progressive neurological and visceral deterioration, with variable onset and severity of the disease. This study investigates the influence of two different NPC1 mutations on the biochemical phenotype in fibroblasts isolated from NPC patients in comparison to healthy, wild type (WT) cells. Skin derived fibroblasts were cultured from one patient compound-heterozygous for D874V/D948Y mutations, which presented wild-type like intracellular trafficking of NPC1, and a second patient compound- heterozygous for I1061T/P887L mutations, which exhibited a more severe biochemical phenotype as revealed in the delayed trafficking of NPC1. Biochemical analysis using HPLC and TLC indicated that lipid accumulations were mutation-dependent and correlated with the trafficking pattern of NPC1: higher levels of cholesterol and glycolipids were associated with the mutations that exhibited delayed intracellular trafficking, as compared to their WT-like trafficked or wild type (WT) counterparts. Furthermore, variations in membrane structure was confirmed in these cell lines based on alteration in lipid rafts composition as revealed by the shift in flotillin-2 (FLOT2) distribution, a typical lipid rafts marker, which again showed marked alterations only in the NPC1 mutant showing major trafficking delay. Finally, treatment with N-butyldeoxynojirimycin (NB-DNJ, Miglustat) led to a reduction of stored lipids in cells from both patients to various extents, however, no normalisation in lipid raft structure was achieved. The data presented in this study help in understanding the varying biochemical phenotypes observed in patients harbouring different mutations, which explain why the effectiveness of NB-DNJ treatment is patient specific.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Colesterol/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Mutação , Proteína C1 de Niemann-Pick/genética , Esfingolipídeos/metabolismo , 1-Desoxinojirimicina/farmacologia , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Genótipo , Humanos , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Fenótipo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética
15.
Viruses ; 12(2)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32054075

RESUMO

Histiocytic sarcomas represent malignant tumors which require new treatment strategies. Canine distemper virus (CDV) is a promising candidate due to its oncolytic features reported in a canine histiocytic sarcoma cell line (DH82 cells). Interestingly, the underlying mechanism might include a dysregulation of angiogenesis. Based on these findings, the aim of the present study was to investigate the impact of a persistent CDV-infection on oxidative stress mediated changes in the expression of hypoxia-inducible factor (HIF)-1α and its angiogenic downstream pathway in DH82 cells in vitro. Microarray data analysis, immunofluorescence for 8-hydroxyguanosine, superoxide dismutase 2 and catalase, and flow cytometry for oxidative burst displayed an increased oxidative stress in persistently CDV-infected DH82 cells (DH82Ond pi) compared to controls. The HIF-1α expression in DH82Ond pi increased, as demonstrated by Western blot, and showed an unexpected, often sub-membranous distribution, as shown by immunofluorescence and immunoelectron microscopy. Furthermore, microarray data analysis and immunofluorescence confirmed a reduced expression of VEGF-B in DH82Ond pi compared to controls. In summary, these results suggest a reduced activation of the HIF-1α angiogenic downstream pathway in DH82Ond pi cells in vitro, most likely due to an excessive, unusually localized, and non-functional expression of HIF-1α triggered by a CDV-induced increased oxidative stress.


Assuntos
Vírus da Cinomose Canina/patogenicidade , Sarcoma Histiocítico/virologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Estresse Oxidativo , Fator B de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular Tumoral , Cães , Análise em Microsséries
16.
Biology (Basel) ; 9(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085405

RESUMO

The discovery, in 2004, of extracellular traps released by neutrophils has extended our understanding of the mode of action of various innate immune cells. This fascinating discovery demonstrated the extracellular trapping and killing of various pathogens by neutrophils. During the last decade, evidence has accumulated showing that extracellular traps play a crucial role in the defence mechanisms of various cell types present in vertebrates, invertebrates, and plants. The aim of this review is to summarise the relevant literature on the evolutionary history of extracellular traps used as a weapon in various kingdoms of life.

17.
Methods Mol Biol ; 2087: 223-233, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31728995

RESUMO

During inflammation and infection, invading pathogens as well as infiltrating neutrophils locally consume oxygen and reduce the present oxygen level. Since oxygen is an elementary component of the microenvironment required for cell activity and alters multiple cellular functions, it is important to study neutrophil functionality and phenotype at characteristic pathophysiological oxygen levels that reflect the hypoxic phenotype during infection and inflammation. Here, we describe methods to study murine neutrophils under hypoxic compared to normoxic conditions, including analysis of cholesterol content as a key lipid involved in biological functions.


Assuntos
Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Colesterol/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Oxigênio/metabolismo , Animais , Separação Celular , Colesterol/isolamento & purificação , Hipóxia/imunologia , Hipóxia/metabolismo , Metabolismo dos Lipídeos , Lipídeos/isolamento & purificação , Camundongos , Ativação de Neutrófilo/imunologia , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
18.
Biomolecules ; 9(9)2019 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-31500283

RESUMO

Sphingolipids are an important group of lipids that play crucial roles in living cells, facilitating cell recognition, signal transduction and endocytosis. The concentration of sphingosine and some of its derivatives like sphinganine may serve as a biomarker for the diagnosis of sphingolipidoses or be used for further research into similar diseases. In this study, a sphingolipid extraction and a high resolution detection method specific for sphingosine and sphinganine was adapted and tested. Lipids were extracted from rats' serum, coupled to o-phthalaldehyde and detected with a fluorescence detector after running through a silica gel column in a high performance liquid chromatography system. With this method, we analysed 20 male and 20 female rat serum samples and compared the concentrations of sphingosine and sphinganine. The results showed a significant difference between the sphingosine concentrations in the male and female rats. The sphingosine concentration in female rats was 805 ng/mL (standard deviation, SD ± 549), while that in males was significantly lower at (75 ng/mL (SD ± 40)). Furthermore, the sphingosine:sphinganine ratio was almost 15-fold higher in the females' samples. The method presented here facilitates the accurate quantification of sphingosine and sphinganine concentrations down to 2.6 ng and 3.0 ng, respectively, and their ratio in small amounts of rat serum samples to study the sphingolipid metabolism and its potential modulation due to gene mutations or the effect of prevalent toxins.


Assuntos
Caracteres Sexuais , Esfingosina/análogos & derivados , Esfingosina/sangue , Esfingosina/isolamento & purificação , Animais , Feminino , Masculino , Ratos
19.
Pathogens ; 9(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905867

RESUMO

Streptococcus (S.) suis is a major cause of economic losses in the pig industry worldwide and is an emerging zoonotic pathogen. One important virulence-associated factor is suilysin (SLY), a toxin that belongs to the family of cholesterol-dependent pore-forming cytolysins (CDC). However, the precise role of SLY in host-pathogen interactions is still unclear. Here, we investigated the susceptibility of different respiratory epithelial cells to SLY, including immortalized cell lines (HEp-2 and NPTr cells), which are frequently used in in vitro studies on S. suis virulence mechanisms, as well as primary porcine respiratory cells, which represent the first line of barrier during S. suis infections. SLY-induced cell damage was determined by measuring the release of lactate dehydrogenase after infection with a virulent S. suis serotype 2 strain, its isogenic SLY-deficient mutant strain, or treatment with the recombinant protein. HEp-2 cells were most susceptible, whereas primary epithelial cells were hardly affected by the toxin. This prompted us to study possible explanations for these differences. We first investigated the binding capacity of SLY using flow cytometry analysis. Since binding and pore-formation of CDC is dependent on the membrane composition, we also determined the cellular cholesterol content of the different cell types using TLC and HPLC. Finally, we examined the ability of those cells to reseal SLY-induced pores using flow cytometry analysis. Our results indicated that the amount of membrane-bound SLY, the cholesterol content of the cells, as well as their resealing capacity all affect the susceptibility of the different cells regarding the effects of SLY. These findings underline the differences of in vitro pathogenicity models and may further help to dissect the biological role of SLY during S. suis infections.

20.
Front Immunol ; 10: 3119, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082302

RESUMO

Gum arabic (GA) is a traditional herbal medicine from Acacia Senegal (L.) Willdenow trees, which consist of a complex mixture of polysaccharides and glycoproteins. It is used in daily applications for several diseases and is considered to protect against bacterial infections. The detailed mechanisms behind these observations are still unclear. In this study, we investigated the direct antibacterial activity of GA water and ethanol extracts against Staphylococcus (S.) aureus or Escherichia (E.) coli and the immunomodulating properties of those extracts on granulocytes as a first line of defense against bacteria. Firstly, the direct antimicrobial effect of GA was tested on three different S. aureus strains and two E. coli strains. The growth of bacteria was analyzed in the presence of different GA concentrations over time. GA water as well as ethanol extracts showed a significant growth inhibition in a concentration-dependent manner in the case of S. aureus Newman, S. aureus Rd5, and E. coli 25922, but not in the case of S. aureus USA300 and E. coli K1. Transmission electron microscopic analysis confirmed an antibacterial effect of GA on the bacteria. Secondly, the immunomodulatory effect of GA on the antimicrobial activity of bovine or human blood-derived granulocytes was evaluated. Interestingly, water and ethanol extracts enhanced antimicrobial activity of granulocytes by the induction of intracellular ROS production. In line with these data, GA increased the phagocytosis rate of E. coli. No effect was seen on neutrophil extracellular trap (NET) formation that mediates killing of extracellular bacteria such as S. aureus. In conclusion, we show that GA exhibits a direct antibacterial effect against some S. aureus and E. coli strains. Furthermore, GA boosts the antimicrobial activities of granulocytes and increases intracellular ROS production, which may lead to more phagocytosis and intracellular killing. These data might explain the described putative antimicrobial activity of GA used in traditional medicine.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/imunologia , Granulócitos/efeitos dos fármacos , Granulócitos/imunologia , Goma Arábica/farmacologia , Fatores Imunológicos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/imunologia , Animais , Antibacterianos/química , Bovinos , Relação Dose-Resposta a Droga , Escherichia coli/ultraestrutura , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Granulócitos/metabolismo , Goma Arábica/química , Humanos , Fatores Imunológicos/química , Testes de Sensibilidade Microbiana , Polissacarídeos Bacterianos/imunologia , Espécies Reativas de Oxigênio , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...