Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732713

RESUMO

This study investigates polyethylene glycol (PEG) homopolymer thin film adsorption on gold surfaces of controlled surface chemistry. The conformational states of physisorbed PEG are analyzed through polarization modulation infrared reflection-absorption spectrometry (PM-IRRAS). The PM-IRRAS principle is based on specific optical selection rules allowing the detection of surface-specific FTIR response of thin polymer films on the basis of differential reflectivity at the polymer/substrate interface for p- and s-polarized light. The intensification of the electric field generated at the PEG/substrate interface for p-polarized IR light in comparison with s-polarized light permits the analysis of PEG chain anisotropy and conformational changes induced by the adsorption. Results showed that PEG adsorbs on model substrates having a rather hydrophilic character in a way that the PEG chains spread parallel to the surface. In the case of a very hydrophilic substrate, the adsorbed PEG chains are in a stable thermodynamic state which allows them to arrange and crystallize as stacked crystalline lamellae after adsorption. The surface topography and morphology of the PEG thin films were also investigated by atomic force microscopy (AFM). While in the bulk state, PEG crystallizes in the form of large spherulites; on substrates whose adsorption is favored by surface chemistry, PEG crystallizes in the form of stacked lamellae with a thickness equal to 20 nm. Conversely, on a hydrophobic substrate, the PEG chains do not crystallize and adsorption occurs in the statistical coil state.

2.
Polymers (Basel) ; 14(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080716

RESUMO

The crystallinity and the growth rate of crystalline structures of polyethylene glycol and polyethylene blocks in polyethylene-b-polyethylene glycol diblock copolymers (PE-b-PEG) were evaluated and compared to polyethylene and polyethylene glycol homopolymers. Melting and crystallization behaviours of PE-b-PEG copolymers with different molecular weights and compositions are investigated by differential scanning calorimetry (DSC). The polyethylene/polyethylene glycol block ratio of the copolymers varies from 17/83 to 77/23 (weight/weight). The influence of the composition of PE-b-PEG copolymer on the ability of each block to crystallize has been determined. Thermal transition data are correlated with optical polarized microscopy, used to investigate the morphology and growth rate of crystals. The results show that the crystallization of the polyethylene block is closer to the polyethylene homopolymer when the copolymer contains more than 50 wt. % of polyethylene in the copolymer. For PE-b-PEG copolymers containing more than 50 wt. % of polyethylene glycol, the polyethylene glycol block morphology is almost similar to the PEG homopolymer. An important hindrance of each block on the crystallization growth rate of the other block has been revealed.

3.
J Food Sci ; 84(3): 499-506, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30706468

RESUMO

The adhesion of wheat dough affects many aspects of industrial baking, from kneading raw dough to the final baking process. In this work, an original method was developed to study the effect of temperature on the adhesive properties of bread dough in contact with a solid surface during heating. Using this approach, it will be possible to understand the factors that affect adhesion between dough and a baking surface, which will aid in developing methods to prevent dough from sticking. Overall, the dough's adhesion to a hydrophobic surface globally decreased with an increase in temperature from 35 to 97 °C, with the exception of the temperature range between 55 and 70 °C, in which the energy of adhesion increased slightly. Under these circumstances, the evolution of adhesion was primarily shaped by the rheological properties of the dough. However, when we used a solid surface with different surface energy, the results changed significantly, which suggests that the mechanisms of adhesion during heating are governed by a balance between the interfacial and bulk properties of the heated dough. The overall decrease in the adhesion of the dough to the hydrophobic glass surface may be explained by a decrease in dough hydrophobicity due to structural and chemical changes in the dough.


Assuntos
Pão/análise , Temperatura Alta , Reologia , Triticum , Adsorção , Vidro , Calefação , Propriedades de Superfície
4.
Appl Spectrosc ; 67(11): 1308-14, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24160883

RESUMO

Alkoxysilanes, and mainly trialkoxysilanes, have been widely used as coupling agents on metallic surfaces. They are of interest mainly because they form a water-stable covalent bond with a surface composed of hydroxides. The grafting of these molecules should also give rise to the formation of a siloxane network at the substrate's surface. However, only a few studies examine stainless steel substrate, such as AISI 316L, for which the main difficulty is the low surface reactivity. In order to improve the silane anchoring, a prehydrolysis of the alkoxysilane was performed to transform the methoxy groups into silanol groups. This reaction happened in an aqueous medium and at a controlled pH, which impacted the prehydrolysis efficiency. Curing followed this step, which allows the grafting of the alkoxysilane on stainless steel's surface. Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was performed in order to identify the grafting of the silane molecules. Tests were made to compare the grafting of alkoxysilanes as a function of their functional groups and their prehydrolysis conditions. PM-IRRAS coupled with atomic force microscopy allowed the observation of the grafting of the studied alkoxysilanes. The nature of the remaining functional group (its ability to react with polymer, for example) of the alkoxysilane plays a major role in this process, since its chemical nature influences the grafting mechanism.

5.
Langmuir ; 20(7): 2707-12, 2004 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-15835141

RESUMO

We have monitored deflection-distance curves with an atomic force microscope (AFM) in contact mode, with a silicon nitride tip, on chemically modified silicon wafers, in the air. The wafers were modified on their surface by grafting self-assembled monolayers (SAMs) of different functional groups such as methyl, ester, amine, or methyl fluoride. A chemically modified surface with a functionalized hydroxyl group was also considered. Qualitative analysis allowed us to compare adhesive forces versus chemical features and surface energy. The systematic calibration procedure of the AFM measurements was performed to produce quantitative data. Our results show that the experimentally determined adhesive force or thermodynamic work of adhesion increases linearly with the total surface energy determined with contact angles measured with different liquids. The influence of capillary condensation of atmospheric water vapor at the tip-sample interface on the measured forces is discussed. Quantitative assessment values were used to determine in situ the SAM-tip thermodynamic work of adhesion on a local scale, which have been found to be in good agreement with quoted values. Finally, the determination of the surface energy of the silicon wafer deduced from the thermodynamic work of adhesion is also proposed and compared with the theoretical value.


Assuntos
Compostos de Silício/química , Silício/química , Termodinâmica , Microscopia de Força Atômica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...