Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tumour Biol ; 46(s1): S297-S308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37840517

RESUMO

The cumulative pool of cell-free DNA (cfDNA) molecules within bodily fluids represents a highly dense and multidimensional information repository. This "biological mirror" provides real-time insights into the composition, function, and dynamics of the diverse genomes within the body, enabling significant advancements in personalized molecular medicine. However, effective use of this information necessitates meticulous classification of distinct cfDNA subtypes with exceptional precision. While cfDNA molecules originating from different sources exhibit numerous genetic, epigenetic, and physico-chemical variations, they also share common features that complicate analyses. Considerable progress has been achieved in mapping the landscape of cfDNA features, their clinical correlations, and optimizing extraction procedures, analytical approaches, bioinformatics pipelines, and machine learning algorithms. Nevertheless, preanalytical workflows, despite their profound impact on cfDNA measurements, have not progressed at a corresponding pace. In this perspective article, we emphasize the pivotal role of robust preanalytical procedures in the development and clinical integration of cfDNA assays, highlighting persistent obstacles and emerging challenges.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Humanos , Ácidos Nucleicos Livres/genética , Neoplasias/genética , Biomarcadores Tumorais/genética , Biologia Computacional , Medicina de Precisão
2.
Diagnostics (Basel) ; 13(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37443705

RESUMO

Human body fluids are rich sources of cell-free nuclear material, which exhibits unique characteristics [...].

3.
Diagnostics (Basel) ; 13(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37046506

RESUMO

Excellent pre-analytical stability is an essential precondition for reliable molecular profiling of circulating tumor DNA (ctDNA) in oncological diagnostics. Therefore, in vitro degradation of ctDNA and the additional release of contaminating genomic DNA from lysed blood cells must be prevented. Streck Cell-Free DNA blood collection tubes (cfDNA BCTs) have proposed advantages over standard K2EDTA tubes, but mainly have been tested in healthy individuals. Blood was collected from cancer patients (n = 53) suffering from colorectal (n = 21), pancreatic (n = 11), and non-small-cell lung cancer (n = 21) using cfDNA BCT tubes and K2EDTA tubes that were processed immediately or after 3 days (BCTs) or 6 hours (K2EDTA) at room temperature. The cfDNA isolated from these samples was characterized in terms of yield using LINE-1 qPCR; the level of gDNA contamination; and the mutation status of KRAS, NRAS, and EGFR genes using BEAMing ddPCR. CfDNA yield and gDNA levels were comparable in both tube types and were not affected by prolonged storage of blood samples for at least 3 days in cfDNA BCTs or 6 hours in K2EDTA tubes. In addition, biospecimens collected in K2EDTA tubes and cfDNA BCTs stored for up to 3 days demonstrated highly comparable levels of mutational load across all respective cancer patient cohorts and a wide range of concentrations. Our data support the applicability of clinical oncology specimens collected and stored in cfDNA BCTs for up to 3 days for reliable cfDNA and mutation analyses.

4.
Med Genet ; 35(4): 201-235, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38835739

RESUMO

Liquid biopsies, in particular the profiling of circulating tumor DNA (ctDNA), have long held promise as transformative tools in cancer precision medicine. Despite a prolonged incubation phase, ctDNA profiling has recently experienced a strong wave of development and innovation, indicating its imminent integration into the cancer management toolbox. Various advancements in mutation-based ctDNA analysis methodologies and technologies have greatly improved sensitivity and specificity of ctDNA assays, such as optimized preanalytics, size-based pre-enrichment strategies, targeted sequencing, enhanced library preparation methods, sequencing error suppression, integrated bioinformatics and machine learning. Moreover, research breakthroughs have expanded the scope of ctDNA analysis beyond hotspot mutational profiling of plasma-derived apoptotic, mono-nucleosomal ctDNA fragments. This broader perspective considers alternative genetic features of cancer, genome-wide characterization, classical and newly discovered epigenetic modifications, structural variations, diverse cellular and mechanistic ctDNA origins, and alternative biospecimen types. These developments have maximized the utility of ctDNA, facilitating landmark research, clinical trials, and the commercialization of ctDNA assays, technologies, and products. Consequently, ctDNA tests are increasingly recognized as an important part of patient guidance and are being implemented in clinical practice. Although reimbursement for ctDNA tests by healthcare providers still lags behind, it is gaining greater acceptance. In this work, we provide a comprehensive exploration of the extensive landscape of ctDNA profiling methodologies, considering the multitude of factors that influence its development and evolution. By illuminating the broader aspects of ctDNA profiling, the aim is to provide multiple entry points for understanding and navigating the vast and rapidly evolving landscape of ctDNA methodologies, applications, and technologies.

5.
Diagnostics (Basel) ; 12(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36553049

RESUMO

Breast cancer is the most common cancer affecting women worldwide. It is a malignant and heterogeneous disease with distinct molecular subtypes, which has prognostic and predictive implications. Circulating tumor DNA (ctDNA), cell-free fragmented tumor-derived DNA in blood plasma, is an invaluable source of specific cancer-associated mutations and holds great promise for the development of minimally invasive diagnostic tests. Furthermore, serial monitoring of ctDNA over the course of systemic and targeted therapies not only allows unparalleled efficacy assessments but also enables the identification of patients who are at risk of progression or recurrence. Droplet digital PCR (ddPCR) is a powerful technique for the detection and monitoring of ctDNA. Due to its relatively high accuracy, sensitivity, reproducibility, and capacity for absolute quantification, it is increasingly used as a tool for managing cancer patients through liquid biopsies. In this review paper, we gauge the clinical utility of ddPCR as a technique for mutational profiling in breast cancer patients and focus on HER2, PIK3CA, ESR1, and TP53, which represent the most frequently mutated genes in breast cancers.

6.
Diagnostics (Basel) ; 12(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36292239

RESUMO

Plasma cell-free DNA (cfDNA) originates from various tissues and cell types and can enable minimally invasive diagnosis, treatment and monitoring of cancer and other diseases. Proper extraction of cfDNA is critical to obtain optimal yields and purity. The goal of this study was to compare the performance of six commercial cfDNA kits to extract pure, high-quality cfDNA from human plasma samples and evaluate the quantity and size profiles of cfDNA extracts-among them, two spin-column based, three magnetic bead-based and two automatic magnetic bead-based methods. Significant differences were observed in the yield of DNA among the different extraction kits (up to 4.3 times), as measured by the Qubit Fluorometer and Bioanalyzer. All kits isolated mostly small fragments corresponding to mono-nucleosomal sizes. The highest yield and reproducibility were obtained by the manual QIAamp Circulating Nucleic Acid Kit and automated MagNA Pure Total NA Isolation Kit. The results highlight the importance of standardizing preanalytical conditions depending on the requirements of the downstream applications.

7.
Diagnostics (Basel) ; 12(9)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36140548

RESUMO

Body fluids are constantly replenished with a population of genetically diverse cell-free DNA (cfDNA) fragments, representing a vast reservoir of information reflecting real-time changes in the host and metagenome. As many body fluids can be collected non-invasively in a one-off and serial fashion, this reservoir can be tapped to develop assays for the diagnosis, prognosis, and monitoring of wide-ranging pathologies, such as solid tumors, fetal genetic abnormalities, rejected organ transplants, infections, and potentially many others. The translation of cfDNA research into useful clinical tests is gaining momentum, with recent progress being driven by rapidly evolving preanalytical and analytical procedures, integrated bioinformatics, and machine learning algorithms. Yet, despite these spectacular advances, cfDNA remains a very challenging analyte due to its immense heterogeneity and fluctuation in vivo. It is increasingly recognized that high-fidelity reconstruction of the information stored in cfDNA, and in turn the development of tests that are fit for clinical roll-out, requires a much deeper understanding of both the physico-chemical features of cfDNA and the biological, physiological, lifestyle, and environmental factors that modulate it. This is a daunting task, but with significant upsides. In this review we showed how expanded knowledge on cfDNA biology and faithful reverse-engineering of cfDNA samples promises to (i) augment the sensitivity and specificity of existing cfDNA assays; (ii) expand the repertoire of disease-specific cfDNA markers, thereby leading to the development of increasingly powerful assays; (iii) reshape personal molecular medicine; and (iv) have an unprecedented impact on genetics research.

8.
Diagnostics (Basel) ; 12(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36010184

RESUMO

All cell and tissue types constantly release DNA fragments into human body fluids by various mechanisms including programmed cell death, accidental cell degradation and active extrusion. Particularly, cell-free DNA (cfDNA) in plasma or serum has been utilized for minimally invasive molecular diagnostics. Disease onset or pathological conditions that lead to increased cell death alter the contribution of different tissues to the total pool of cfDNA. Because cfDNA molecules retain cell-type specific epigenetic features, it is possible to infer tissue-of-origin from epigenetic characteristics. Recent research efforts demonstrated that analysis of, e.g., methylation patterns, nucleosome occupancy, and fragmentomics determined the cell- or tissue-of-origin of individual cfDNA molecules. This novel tissue-of origin-analysis enables to estimate the contributions of different tissues to the total cfDNA pool in body fluids and find tissues with increased cell death (pathologic condition), expanding the portfolio of liquid biopsies towards a wide range of pathologies and early diagnosis. In this review, we summarize the currently available tissue-of-origin approaches and point out the next steps towards clinical implementation.

9.
Diagnostics (Basel) ; 12(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36010246

RESUMO

Unique bits of genetic, biological and pathological information occur in differently sized cell-free DNA (cfDNA) populations. This is a significant discovery, but much of the phenomenon remains to be explored. We investigated cfDNA fragmentation patterns in cultured human bone cancer (143B) cells using increasingly sensitive electrophoresis assays, including four automated microfluidic capillary electrophoresis assays from Agilent, i.e., DNA 1000, High Sensitivity DNA, dsDNA 915 and dsDNA 930, and an optimized manual agarose gel electrophoresis protocol. This comparison showed that (i) as the sensitivity and resolution of the sizing methods increase incrementally, additional nucleosomal multiples are revealed (hepta-nucleosomes were detectable with manual agarose gel electrophoresis), while the estimated size range of high molecular weight (HMW) cfDNA fragments narrow correspondingly; (ii) the cfDNA laddering pattern extends well beyond the 1-3 nucleosomal multiples detected by commonly used methods; and (iii) the modal size of HMW cfDNA populations is exaggerated due to the limited resolving power of electrophoresis, and instead consists of several poly-nucleosomal subpopulations that continue the series of DNA laddering. Furthermore, the most sensitive automated assay used in this study (Agilent dsDNA 930) revealed an exponential decay in the relative contribution of increasingly longer cfDNA populations. This power-law distribution suggests the involvement of a stochastic inter-nucleosomal DNA cleavage process, wherein shorter populations accumulate rapidly as they are fed by the degradation of all larger populations. This may explain why similar size profiles have historically been reported for cfDNA populations originating from different processes, such as apoptosis, necrosis, accidental cell lysis and purported active release. These results not only demonstrate the diversity of size profiles generated by different methods, but also highlight the importance of caution when drawing conclusions on the mechanisms that generate different cfDNA size populations, especially when only a single method is used for sizing.

10.
Diagnostics (Basel) ; 12(8)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36010255

RESUMO

Given the crucial role of mitochondria as the main cellular energy provider and its contribution towards tumor growth, chemoresistance, and cancer cell plasticity, mitochondrial DNA (mtDNA) could serve as a relevant biomarker. Thus, the profiling of mtDNA mutations and copy number variations is receiving increasing attention for its possible role in the early diagnosis and monitoring therapies of human cancers. This applies particularly to highly aggressive pancreatic cancer, which is often diagnosed late and is associated with poor prognosis. As current diagnostic procedures are based on imaging, tissue histology, and protein biomarkers with rather low specificity, tumor-derived mtDNA mutations detected from whole blood represents a potential significant leap forward towards early cancer diagnosis. However, for future routine use in clinical settings it is essential that preanalytics related to the characterization of mtDNA in whole blood are thoroughly standardized, controlled, and subject to proper quality assurance, yet this is largely lacking. Therefore, in this study we carried out a comprehensive preanalytical workup comparing different mtDNA extraction methods and testing important preanalytical steps, such as the use of different blood collection tubes, different storage temperatures, length of storage time, and yields in plasma vs. whole blood. To identify analytical and preanalytical differences, all variables were tested in both healthy subjects and pancreatic carcinoma patients. Our results demonstrated a significant difference between cancer patients and healthy subjects for some preanalytical workflows, while other workflows failed to yield statistically significant differences. This underscores the importance of controlling and standardizing preanalytical procedures in the development of clinical assays based on the measurement of mtDNA.

11.
Diagnostics (Basel) ; 12(6)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35741173

RESUMO

Liquid biopsy is a broad term that refers to the testing of body fluids for biomarkers that correlate with a pathological condition. While a variety of body-fluid components (e.g., circulating tumor cells, extracellular vesicles, RNA, proteins, and metabolites) are studied as potential liquid biopsy biomarkers, cell-free DNA (cfDNA) has attracted the most attention in recent years. The total cfDNA population in a typical biospecimen represents an immensely rich source of biological and pathological information and has demonstrated significant potential as a versatile biomarker in oncology, non-invasive prenatal testing, and transplant monitoring. As a significant portion of cfDNA is composed of repeat DNA sequences and some families (e.g., pericentric satellites) were recently shown to be overrepresented in cfDNA populations vs their genomic abundance, it holds great potential for developing liquid biopsy-based biomarkers for the early detection and management of patients with cancer. By outlining research that employed cell-free repeat DNA sequences, in particular the ALU and LINE-1 elements, we highlight the clinical potential of the repeat-element content of cfDNA as an underappreciated marker in the cancer liquid biopsy repertoire.

12.
Sci Rep ; 11(1): 9460, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947882

RESUMO

Recent advances in basic research have unveiled several strategies for improving the sensitivity and specificity of cell-free DNA (cfDNA) based assays, which is a prerequisite for broadening its clinical use. Included among these strategies is leveraging knowledge of both the biogenesis and physico-chemical properties of cfDNA towards the identification of better disease-defining features and optimization of methods. While good progress has been made on this front, much of cfDNA biology remains uncharted. Here, we correlated serial measurements of cfDNA size, concentration and nucleosome histone modifications with various cellular parameters, including cell growth rate, viability, apoptosis, necrosis, and cell cycle phase in three different cell lines. Collectively, the picture emerged that temporal changes in cfDNA levels are rather irregular and not the result of constitutive release from live cells. Instead, changes in cfDNA levels correlated with intermittent cell death events, wherein apoptosis contributed more to cfDNA release in non-cancer cells and necrosis more in cancer cells. Interestingly, the presence of a ~ 3 kbp cfDNA population, which is often deemed to originate from accidental cell lysis or active release, was found to originate from necrosis. High-resolution analysis of this cfDNA population revealed an underlying DNA laddering pattern consisting of several oligo-nucleosomes, identical to those generated by apoptosis. This suggests that necrosis may contribute significantly to the pool of mono-nucleosomal cfDNA fragments that are generally interrogated for cancer mutational profiling. Furthermore, since active steps are often taken to exclude longer oligo-nucleosomes from clinical biospecimens and subsequent assays this raises the question of whether important pathological information is lost.


Assuntos
Ácidos Nucleicos Livres/genética , DNA/genética , Histonas/genética , Nucleossomos/genética , Apoptose/genética , Técnicas de Cultura de Células , Ciclo Celular/genética , Humanos , Mutação/genética , Necrose/genética , Neoplasias/genética
13.
Hum Genet ; 140(4): 565-578, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33123832

RESUMO

Cell-free DNA (cfDNA) has become widely recognized as a promising candidate biomarker for minimally invasive characterization of various genomic disorders and other clinical scenarios. However, among the obstacles that currently challenge the general progression of the research field, there remains an unmet need for unambiguous universal cfDNA nomenclature. To address this shortcoming, we classify in this report the different types of cfDNA molecules that occur in the human body based on its origin, genetic traits, and locality. We proceed by assigning existing terms to each of these cfDNA subtypes, while proposing new terms and abbreviations where clarity is lacking and more precise stratification would be beneficial. We then suggest the proper usage of these terms within different contexts and scenarios, focusing mainly on the nomenclature as it relates to the domains of oncology, prenatal testing, and post-transplant surgery surveillance. We hope that these recommendations will serve as useful considerations towards the establishment of universal cfDNA nomenclature in the future. In addition, it is conceivable that many of these recommendations can be transposed to cell-free RNA nomenclature by simply exchanging "DNA" with "RNA" in each acronym/abbreviation. Similarly, when describing DNA and RNA collectively, the suffix can be replaced with "NAs" to indicate nucleic acids.


Assuntos
Ácidos Nucleicos Livres , Terminologia como Assunto , Animais , Ácidos Nucleicos Livres/sangue , Humanos
14.
Crit Rev Clin Lab Sci ; 57(7): 484-507, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393081

RESUMO

Fragments of cell-free DNA (cfDNA) in human body fluids often carry disease-specific alterations and are now widely recognized as ideal biomarkers for the detection and monitoring of genomic disorders, especially cancer, that are normally difficult to examine noninvasively. However, the conversion of promising research findings into tools useful in routine clinical testing of cancer has been a slow-moving process. A major reason is that the diagnostic sensitivity and specificity of cfDNA-based clinical assays are negatively impacted by a combination of suboptimal and inter-institutional differences in preanalytical procedures. The most prominent factors include: (i) a poor understanding of the biological factors that determine the characteristics of the cfDNA population in a biospecimen prior to collection, (ii) inattention to how cfDNA with different structures and physical properties are affected differently by a given preanalytical step, and (iii) the sheer number of possible conditions that can be selected from for each preanalytical step along with a continually expanding menu of commercial products that often show varying degrees of bias and efficiency. The convergence of these variables makes it difficult for research groups and institutions to reach a consensus on optimal preanalytical procedures and a challenging task to establish widely applied standards, which ultimately hamper the development of cfDNA assays that are fit for broad clinical implementation. In this review, we follow a systematic approach to explore the most confounding preanalytical factors that affect the outcome of cfDNA measurements.


Assuntos
Ácidos Nucleicos Livres/análise , Biópsia Líquida/métodos , Manejo de Espécimes/métodos , Biomarcadores/sangue , Biomarcadores Tumorais/genética , Coleta de Amostras Sanguíneas/métodos , Coleta de Amostras Sanguíneas/normas , Humanos , Biópsia Líquida/normas , Biópsia Líquida/tendências , Neoplasias/sangue , Neoplasias/diagnóstico , Sensibilidade e Especificidade , Manejo de Espécimes/normas
15.
Clin Cancer Res ; 26(13): 3104-3109, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32122922

RESUMO

Circulating cell-free DNA (cfDNA) is rapidly transitioning from discovery research to an important tool in clinical decision making. However, the lack of harmonization of preanalytic practices across institutions may compromise the reproducibility of cfDNA-derived data and hamper advancements in cfDNA testing in the clinic. Differences in cellular genomic contamination, cfDNA yield, integrity, and fragment length have been attributed to different collection tube types and anticoagulants, processing delays and temperatures, tube agitation, centrifugation protocols and speeds, plasma storage duration and temperature, the number of freeze-thaw events, and cfDNA extraction and quantification methods, all of which can also ultimately impact subsequent downstream analysis. Thus, there is a pressing need for widely applicable standards tailored for cfDNA analysis that include all preanalytic steps from blood draw to analysis. The NCI's Biorepositories and Biospecimen Research Branch has developed cfDNA-specific guidelines that are based upon published evidence and have been vetted by a panel of internationally recognized experts in the field. The guidelines include optimal procedures as well as acceptable alternatives to facilitate the generation of evidence-based protocols by individual laboratories and institutions. The aim of the document, which is entitled "Biospecimen Evidence-based Best Practices for Cell-free DNA: Biospecimen Collection and Processing," is to improve the accuracy of cfDNA analysis in both basic research and the clinic by improving and harmonizing practices across institutions.


Assuntos
Ácidos Nucleicos Livres , Prática Clínica Baseada em Evidências , Guias como Assunto , Biópsia Líquida/métodos , Manejo de Espécimes/métodos , Animais , Biomarcadores Tumorais , Prática Clínica Baseada em Evidências/métodos , Prática Clínica Baseada em Evidências/normas , Humanos , Biópsia Líquida/normas , Neoplasias/diagnóstico , Neoplasias/genética , Pesquisa , Manejo de Espécimes/normas
16.
Biol Rev Camb Philos Soc ; 93(3): 1649-1683, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29654714

RESUMO

Since the detection of cell-free DNA (cfDNA) in human plasma in 1948, it has been investigated as a non-invasive screening tool for many diseases, especially solid tumours and foetal genetic abnormalities. However, to date our lack of knowledge regarding the origin and purpose of cfDNA in a physiological environment has limited its use to more obvious diagnostics, neglecting, for example, its potential utility in the identification of predisposition to disease, earlier detection of cancers, and lifestyle-induced epigenetic changes. Moreover, the concept or mechanism of cfDNA could also have potential therapeutic uses such as in immuno- or gene therapy. This review presents an extensive compilation of the putative origins of cfDNA and then contrasts the contributions of cellular breakdown processes with active mechanisms for the release of cfDNA into the extracellular environment. The involvement of cfDNA derived from both cellular breakdown and active release in lateral information transfer is also discussed. We hope to encourage researchers to adopt a more holistic view of cfDNA research, taking into account all the biological pathways in which cfDNA is involved, and to give serious consideration to the integration of in vitro and in vivo research. We also wish to encourage researchers not to limit their focus to the apoptotic or necrotic fraction of cfDNA, but to investigate the intercellular messaging capabilities of the actively released fraction of cfDNA and to study the role of cfDNA in pathogenesis.


Assuntos
Ácidos Nucleicos Livres/sangue , Corpo Humano , Biomarcadores/sangue , Regulação da Expressão Gênica , Humanos
17.
Biochimie ; 140: 93-105, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28668269

RESUMO

BACKGROUND: It has long been believed that cell-free DNA (cfDNA) actively released into circulation can serve as intercellular messengers, and their involvement in processes such as the bystander effect strongly support this. However, this intercellular messaging function of cfDNA may have clinical implications that have not yet been considered. METHODS: CfDNA was isolated from the growth medium of HepG2 cells treated with valproic acid (VPA). This cfDNA was then administered to untreated cells and cellular metabolic activity was measured. RESULTS: VPA altered the characteristics of cfDNA released by treated HepG2 cells in vitro. When administered to untreated cells, the cfDNA from cells treated with VPA resulted in the dose-dependent induction of glycolytic activity within 36 min of administration, but little to no alterations in oxidative phosphorylation. The glycolytic activity lasted for 4-6 h, whereas changes in subsequent cfDNA release and characteristics were found to remain persistent after two 24 h treatments. Fragmented genomic DNA from VPA-treated cells did not induce the effects observed for cfDNA obtained VPA-treated cells. CONCLUSIONS: It is possible for cfDNA to, under in vitro conditions, transfer pharmaceutically-induced effects to untreated recipient cells. Further investigation regarding this occurrence under in vivo conditions is, therefore, strongly encouraged. GENERAL SIGNIFICANCE: The intercellular messaging functions of cfDNA present in donated biological fluids has potential clinical implications that require urgent attention. These implications may, however, also have potential as new forms of treatment that can circumvent pharmacological barriers.


Assuntos
Carcinoma Hepatocelular/metabolismo , Comunicação Celular/efeitos dos fármacos , DNA de Neoplasias/metabolismo , Neoplasias Hepáticas/metabolismo , Ácido Valproico/farmacologia , Carcinoma Hepatocelular/patologia , Glicólise/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Fosforilação Oxidativa/efeitos dos fármacos
18.
Int J Biochem Cell Biol ; 89: 182-192, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28655575

RESUMO

BACKGROUND: Investigating the biological functions of cell-free DNA (cfDNA) is limited by the interference of vast numbers of putative sources and causes of DNA release into circulation. Utilization of three-dimensional (3D) spheroid cell cultures, models with characteristics closer to the in vivo state, may be of significant benefit for cfDNA research. METHODS: CfDNA was isolated from the growth medium of C3A spheroid cultures in rotating bioreactors during both normal growth and treatment with acetaminophen. Spheroid growth was monitored via planimetry, lactate dehydrogenase activity and glucose consumption and was related to isolated cfDNA characteristics. RESULTS: Changes in spheroid growth and stability were effectively mirrored by cfDNA characteristics. CfDNA characteristics correlated with that of previous two-dimensional (2D) cell culture and human plasma research. CONCLUSIONS: 3D spheroid cultures can serve as effective, simplified in vivo-simulating "closed-circuit" models since putative sources of cfDNA are limited to only the targeted cells. In addition, cfDNA can also serve as an alternative or auxiliary marker for tracking spheroid growth, development and culture stability. BIOLOGICAL SIGNIFICANCE: 3D cell cultures can be used to translate "closed-circuit" in vitro model research into data that is relevant for in vivo studies and clinical applications. In turn, the utilization of cfDNA during 3D culture research can optimize sample collection without affecting the stability of the growth environment. Combining 3D culture and cfDNA research could, therefore, optimize both research fields.


Assuntos
Ácidos Nucleicos Livres/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Glucose/metabolismo , Células Hep G2 , Humanos
19.
Cell Mol Life Sci ; 74(14): 2689-2707, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28315952

RESUMO

Although circulating DNA (cirDNA) analysis shows great promise as a screening tool for a wide range of pathologies, numerous stumbling blocks hinder the rapid translation of research to clinical practice. This is related directly to the inherent complexity of the in vivo setting, wherein the influence of complex systems of interconnected cellular responses and putative DNA sources creates a seemingly arbitrary representation of the quantitative and qualitative properties of the cirDNA in the blood of any individual. Therefore, to evaluate the potential of in vitro cell cultures to circumvent the difficulties encountered in in vivo investigations, the purpose of this work was to elucidate the characteristics of the DNA released [cell-free DNA (cfDNA)] by eight different cell lines. This revealed three different forms of cfDNA release patterns and the presence of nucleosomal fragments as well as actively released forms of DNA, which are not only consistently observed in every tested cell line, but also in plasma samples. Correlations between cfDNA release and cellular origin, growth rate, and cancer status were also investigated by screening and comparing bioenergetics flux parameters. These results show statistically significant correlations between cfDNA levels and glycolysis, while no correlations between cfDNA levels and oxidative phosphorylation were observed. Furthermore, several correlations between growth rate, cancer status, and dependency on aerobic glycolysis were observed. Cell cultures can, therefore, successfully serve as closed-circuit models to either replace or be used in conjunction with biofluid samples, which will enable sharper focus on specific cell types or DNA origins.


Assuntos
DNA/química , Metabolismo Energético , Apoptose , Linhagem Celular , Sistema Livre de Células , Eletroforese Capilar , Glicólise , Humanos , Cinética , Fosforilação Oxidativa , Estresse Fisiológico
20.
Biochimie ; 135: 28-34, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28104508

RESUMO

In the Krebs cycle, succinate is oxidized to fumarate by succinate dehydrogenase (SDH), followed by the conversion of fumarate to malate by fumarate hydratase (FH). In cells with defective SDH and FH, the Krebs cycle is congested, respiration impaired and fumarate and succinate accumulates. Several studies have indicated that the accumulation of these substrates are associated with cytotoxicity and oncogenesis. High levels of succinate and fumarate induce hypoxia inducible factor (HIF1A) hydroxylases, leading to the activation of oncogenic HIF pathways. However, the role of HIF as primary inducer of oncogenic change has been questioned, as other non-enzymatic mechanisms have been shown to interfere with cellular metabolism, cell signalling as well as disrupting protein function. Owing to the essential roles that SDH and FH play in cellular energy metabolism, and their associated tumor suppressor capacity, it is vital to understand the biochemical effects resulting from the accumulation of their associated metabolites. Therefore, in this study, we investigated the effect of high concentrations of succinate and fumarate exposure on cell viability, genome integrity and global DNA methylation using a human hepatocellular carcinoma (HepG2) cell culture model. It was found that relatively high concentrations of succinate and fumarate cause a loss of cell viability, which seems to be orchestrated through an apoptotic pathway. Cells exposed to high levels of succinate also presented with elevated caspase 3 and/or caspase 7 levels. In addition, elevated levels of fumarate lead to extensive DNA fragmentation, which may contribute pathophysiologically by inducing chromosomal instability, while succinate demonstrated lower genotoxicity. Furthermore, both succinate and fumarate altered the global DNA methylation patterns via significant DNA hypermethylation. Since numerous studies have reported correlations between aberrant DNA methylation and oncogenesis, hypermethylation may contribute to the oncogenesis observed in cells exposed to high concentrations of these metabolites.


Assuntos
Apoptose/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Fumaratos/farmacologia , Ácido Succínico/farmacologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Citometria de Fluxo , Células Hep G2 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...