Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anal Toxicol ; 29(7): 607-15, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16419389

RESUMO

Two studies were conducted to determine if extreme passive exposure to cannabis smoke in a motor vehicle would produce positive results for delta-tetrahydrocannabinol (THC) in oral fluid. Passive exposure to cannabis smoke in an unventilated room has been shown to produce a transient appearance of THC in oral fluid for up to 30 min. However, it is well known that such factors as room size and extent of smoke exposure can affect results. Questions have also been raised concerning the effects of tobacco when mixed with marijuana and THC content. We conducted two passive cannabis studies under severe passive smoke exposure conditions in an unventilated eight-passenger van. Four passive subjects sat alongside four active cannabis smokers who each smoked a single cannabis cigarette containing either 5.4%, 39.5 mg THC (Study 1) or 10.4%, 83.2 mg THC (Study 2). The cigarettes in Study 1 contained tobacco mixed with cannabis; cigarettes in Study 2 contained only cannabis. Oral fluid specimens were collected from passive and active subjects with the Intercept Oral Specimen Collection Device for 1 h after smoking cessation while inside the van (Study 1) and up to 72 h (passive) or 8 h (active) outside the van. Additionally in Study 1, Intercept collectors were exposed to smoke in the van to assess environmental contamination during collection procedures. For Study 2, all oral fluid collections were outside the van following smoking cessation to minimize environmental contamination. Oral samples were analyzed with the Cannabinoids Intercept MICRO-PLATE EIA and quantitatively by gas chromatography-tandem mass spectrometry (GC-MS-MS). THC concentrations were adjusted for dilution (x 3). The screening and confirmation cutoff concentrations for THC in neat oral fluid were 3 ng/mL and 1.5 ng/mL, respectively. The limits of detection (LOD) and quantitation (LOQ) for THC in the GC-MS-MS assay were 0.3 and 0.75 ng/mL, respectively. Urine specimens were collected, screened (EMIT, 50 ng/mL cutoff), and analyzed by GC-MS-MS for THCCOOH (LOD/LOQ = 1.0 ng/mL). Peak oral fluid THC concentrations in passive subjects recorded at the end of cannabis smoke exposure were up to 7.5 ng/mL (Study 1) and 1.2 ng/mL (Study 2). Thereafter, THC concentrations quickly declined to negative levels within 30-45 min in Study 1. It was found that environmentally exposed Collectors contained 3-14 ng/mL in Study 1. When potential contamination during collection was eliminated in Study 2, all passive subjects were negative at screening/confirmation cutoff concentrations throughout the study. Oral fluid specimens from active smokers had peak concentrations of THC approximately 100-fold greater than passive subjects in both studies. Positive oral fluid results were observed for active smokers 0-8 h. Urine analysis confirmed oral fluid results. These studies clarify earlier findings on the effects of passive cannabis smoke on oral fluid results. Oral fluid specimens collected in the presence of cannabis smoke appear to have been contaminated, thereby falsely elevating THC concentrations in oral fluid. The risk of a positive test for THC was virtually eliminated when specimens were collected in the absence of THC smoke.


Assuntos
Cannabis , Dronabinol/análise , Alucinógenos/análise , Fumar Maconha , Saliva/química , Adolescente , Adulto , Poluição do Ar em Ambientes Fechados/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Imunoensaio , Masculino , Pessoa de Meia-Idade , Detecção do Abuso de Substâncias/métodos
2.
J Anal Toxicol ; 28(7): 546-52, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15516313

RESUMO

Oral fluid testing for Delta(9)-tetrahydrocannabinol (THC) provides a convenient means of detection of recent cannabis usage. In this study, the risk of positive oral fluid tests from passive cannabis smoke exposure was investigated by housing four cannabis-free volunteers in a small, unventilated, and sealed room with an approximate volume of 36 m(3). Five active cannabis smokers were also present in the room, and each smoked a single cannabis cigarette (1.75% THC). Cannabis smoking occurred over the first 20 min of the study session. All subjects remained in the room for approximately 4 h. Oral fluid specimens were collected with the Intercept DOA Oral Specimen Collection Device. Three urine specimens were collected (0, 20, and 245 min). In addition, three air samples were collected for measurement of THC content. All oral fluid specimens were screened by enzyme immunoassay (EIA) for cannabinoids (cutoff concentration = 3 ng/mL) and tested by gas chromatography-tandem mass spectrometry (GC-MS-MS) for THC (LOQ/LOD = 0.75 ng/mL). All urine specimens were screened by EIA for cannabinoids (cutoff concentration = 50 ng/mL) and tested by GC-MS-MS for THCCOOH (LOQ/LOD = 1 ng/mL). Air samples were measured for THC by GC-MS (LOD = 1 ng/L). A total of eight oral fluid specimens (collected 20 to 50 min following initiation of smoking) from the four passive subjects screened and confirmed positive for THC at concentrations ranging from 3.6 to 26.4 ng/mL. Two additional specimens from one passive subject, collected at 50 and 65 min, screened negative but contained THC in concentrations of 4.2 and 1.1 ng/mL, respectively. All subsequent specimens for passive participants tested negative by EIA and GC-MS-MS for the remainder of the 4-h session. In contrast, oral fluid specimens collected from the five cannabis smokers generally screened and confirmed positive for THC throughout the session at concentrations substantially higher than observed for passive subjects. Urine specimens from active cannabis smokers also screened and confirmed positive at conventional cutoff concentrations. A biphasic pattern of decline for THC was observed in oral fluid specimens collected from cannabis smokers, whereas a linear decline was seen for passive subjects suggesting that initial oral fluid contamination is cleared rapidly and is followed by THC sequestration in the oral mucosa. It is concluded that the risk of positive oral fluid tests from passive cannabis smoke inhalation is limited to a period of approximately 30 min following exposure.


Assuntos
Cannabis , Dronabinol/farmacocinética , Exposição por Inalação , Fumar Maconha/metabolismo , Adulto , Poluição do Ar em Ambientes Fechados/análise , Cannabis/química , Dronabinol/análise , Dronabinol/urina , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Técnicas Imunoenzimáticas , Masculino , Fumar Maconha/urina , Pessoa de Meia-Idade , Saliva/química , Fumaça , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...