Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(24): 10646-10658, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32432870

RESUMO

Electrochemical electron transfer (ET) of transition metal complexes or redox metalloproteins can be catalyzed by more than an order of magnitude by molecular scale metallic nanoparticles (NPs), often rationalized by concentration enhancement of the redox molecules in the interfacial region, but collective electronic AuNP array effects have also been forwarded. Using DFT combined with molecular electrochemical ET theory we explore here whether a single molecular scale Au nanocluster (AuC) between a Au (111) surface and the molecular redox probe ferrocene/ferricinium (Fc/Fc+) can trigger an ET rate increase. Computational challenges limit us to AunCs (n up to 147), which are smaller than most electrocatalytic AuCs studied experimentally. AuC-coating thiols are addressed both as adsorption of two S atoms at the structural Au55 bridge sites and as superexchange of variable-size AuCs via a single six-carbon alkanethiyl bridge. Our results are guiding, but enable comparing many AuC surface details (apex, ridge, face, direct vs superexchange ET) with a planar Au(111) surface. The rate-determining electronic transmission coefficients for ET between Fc/Fc+ and AuC are highly sensitive to subtle AuC electronic features. The transmission coefficients mostly compete poorly with direct Fc/Fc+ ET at the Au(111) surface, but Fc/Fc+ 100 face-bound on Au79 and Au147 and ridge bound on Au19 leads to a 2- or 3-fold rate enhancement, in different distance ranges. Single AuCs can thus indeed cause rate enhancement of simple electrochemical ET, but additional, possibly collective AuNC effects, as well as larger clusters and more complete coating layers, also need to be considered.

2.
Inorg Chem ; 55(18): 9335-45, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27588329

RESUMO

Outer-sphere electron transfer (ET) between optically active transition-metal complexes and either other transition-metal complexes or metalloproteins is a prototype reaction for kinetic chirality. Chirality as the ratio between bimolecular rate constants of two enantiomers mostly amounts to 1.05-1.2 with either the Λ or Δ form the more reactive, but the origin of chirality in ET parameters such as work terms, electronic transmission coefficient, and nuclear reorganization free energy has not been addressed. We report a study of ET between the Λ-/Δ-[Co(Ox)3](3-) pair (Ox = oxalate) and horse heart cytochrome c (cyt c). This choice is prompted by strong ion-pair formation that enables separation into inter-reactant interaction (chiral "recognition") and ET within the ion pair ("stereoselectivity"). Chiral selectivity was first addressed experimentally. Λ-[Co(Ox)3](3-) was found to be both the more strongly bound and faster reacting enantiomer expressed respectively by the ion-pair formation constant KX and ET rate constant kET(X) (X = Λ and Δ), with KΛ/KΔ and kET(Λ)/kET(Δ) both ≈1.1-1.2. rac-[Co(Ox)3](3-) behavior is intermediate between those of Λ- and Δ-[Co(Ox)3](3-). Chirality was next analyzed by quantum-mechanical ET theory combined with density functional theory and statistical mechanical computations. We also modeled the ion pair K(+)·[Co(Ox)3](3-) in order to address the influence of the solution ionic strength. The complex structure of cyt c meant that this reactant was represented solely by the heme group including the chiral axial ligands L-His and L-Met. Both singlet and triplet hemes as well as hemes with partially deprotonated propionic acid side groups were addressed. The computations showed that the most favorable inter-reactant configuration involved a narrow distance and orientation space very close to the contact distance, substantiating the notion of a reaction complex and the equivalence of the binding constant to a bimolecular reaction volume. The reaction is significantly diabatic even at these short inter-reactant distances, with electronic transmission coefficients κel(X) = 10(-3)-10(-2). The computations demonstrated chirality in both KX and κel(X) but no chirality in the reorganization and reaction free energy (driving force). As a result of subtle features in both KX and κel(X) chirality, the "operational" chirality κET(Λ)KΛ/κET(Δ)KΔ emerges larger than unity (1.1-1.2) from the molecular modeling as in the experimental data.


Assuntos
Cobalto/metabolismo , Complexos de Coordenação/metabolismo , Citocromos c/metabolismo , Ácido Oxálico/metabolismo , Animais , Cobalto/química , Complexos de Coordenação/química , Citocromos c/química , Transporte de Elétrons , Heme/química , Heme/metabolismo , Cavalos , Cinética , Modelos Moleculares , Ácido Oxálico/química , Oxirredução , Estereoisomerismo
3.
Phys Chem Chem Phys ; 14(17): 5953-65, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22430606

RESUMO

The di-heme protein Pseudomonas stutzeri cytochrome c(4) (cyt c(4)) has emerged as a useful model for studying long-range protein electron transfer (ET). Recent experimental observations have shown a dramatically different pattern of intramolecular ET between the two heme groups in different local environments. Intramolecular ET in homogeneous solution is too slow (>10 s) to be detected but fast (ms-µs) intramolecular ET in an electrochemical environment has recently been achieved by controlling the molecular orientation of the protein assembled on a gold electrode surface. In this work we have performed computational modeling of the intramolecular ET process by a combination of density functional theory (DFT) and quantum mechanical charge transfer theory to disclose reasons for this difference. We first address the electronic structures of the model heme core with histidine and methionine axial ligands in both low- and high-spin states by structure-optimized DFT. The computations enable estimating the intramolecular reorganization energy of the ET process for different combinations of low- and high-spin heme couples. Environmental reorganization free energies, work terms ("gating") and driving force were determined using dielectric continuum models. We then calculated the electronic transmission coefficient of the intramolecular ET rate using perturbation theory combined with the electronic wave functions determined by the DFT calculations for different heme group orientations and Fe-Fe separations. The reactivity of low- and high-spin heme groups was notably different. The ET rate is exceedingly low for the crystallographic equilibrium orientation but increases by several orders of magnitude for thermally accessible non-equilibrium configurations. Deprotonation of the propionate carboxyl group was also found to enhance the ET rate significantly. The results are discussed in relation to the observed surface immobilization effect and support the notion of conformationally gated ET.


Assuntos
Citocromos c/metabolismo , Heme/química , Simulação de Dinâmica Molecular , Citocromos c/química , Transporte de Elétrons , Oxirredução , Estrutura Terciária de Proteína , Pseudomonas stutzeri/metabolismo , Teoria Quântica
4.
J Phys Chem B ; 113(30): 10277-84, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19580296

RESUMO

Solvent dynamics effects on electroreduction of peroxodisulphate anion on mercury electrode (a typical bond breaking electron transfer reaction) are explored in the framework of the Sumi-Marcus model. The reaction three-dimensional free energy surface is constructed using the Anderson model Hamiltonian. A new interpretation of short- and long-time survival times is presented as well. Since the reduction is assumed to proceed from aqueous sucrose and glucose solutions of different concentrations (which are used to vary the solution viscosity), unavoidable changes in the Pekar factor (static effect) are also taken into account. The results of model calculations are employed to interpret challenging experimental data on nonmonotonous constant rate vs solution viscosity dependence reported earlier (in part, appearance of an ascent plot). The influence of mixed solvent composition on the reaction rate and transfer coefficient is explained in terms of the saddle point avoidance in the vicinity of activationless discharge. Splitting of the reaction coordinates into slow (solvent) and fast (intramolecular) ones is argued to be crucial, as the most important reaction features cannot be described by means of more simplified models, even if both static and dynamic effects are addressed.

5.
Langmuir ; 25(4): 2232-40, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19161269

RESUMO

We have used L-cysteine (Cys) as a model system to study the surface electronic structures of single molecules at the submolecular level in aqueous buffer solution by a combination of electrochemical scanning tunneling microscopy (in situ STM), electrochemistry including voltammetry and chronocoulometry, and density functional theory (DFT) computations. Cys molecules were assembled on single-crystal Au(110) surfaces to form a highly ordered monolayer with a periodic lattice structure of c(2x2) in which each unit contains two molecules; this conclusion is confirmed by the results of calculations based on a slab model for the metal surface. The ordered monolayer offers a platform for submolecular scale electronic mapping that is an issue of fundamental interest but remains a challenge in STM imaging science and surface chemistry. Single Cys molecules were mapped as three electronic subunits contributed mainly from three chemical moieties: thiol (-SH), carboxylic (-COOH), and amine (-NH2) groups. The contrasts of the three subunits depend on the environment (e.g., pH), which affects the electronic structure of adsorbed species. From the DFT computations focused on single molecules, rational analysis of the electronic structures is achieved to delineate the main factors that determine electronic contrasts in the STM images. These factors include the molecular orientation, the chemical nature of the elements or groups in the molecule, and the interaction of the elements with the substrate and tip. The computational images recast as constant-current-height profiles show that the most favorable molecular orientation is the adsorption of cysteine as a radical in zwitterionic form located on the bridge between the Au(110) atomic rows and with the amine and carboxyl group toward the solution bulk. The correlation between physical location and electronic contrast of the adsorbed molecules was also revealed by the computational data. The present study shows that cysteine packing in the adlayer on Au(110) from the liquid environment is in contrast to that from the ultrahigh-vacuum environment, suggesting solvent plays a role during molecular assembly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...