Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Dev Biol ; 271(2): 372-87, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15223341

RESUMO

We present a stochastic cellular automaton model for the behavior of limb bud precartilage mesenchymal cells undergoing chondrogenic patterning. This "agent-oriented" model represents cells by points on a lattice that obey rules motivated by experimental findings. The "cells" follow these rules as autonomous agents, interacting with other cells and with the microenvironments cell activities produce. The rules include random cell motion, production and lateral deposition of a substrate adhesion molecule (SAM, corresponding to fibronectin), production and release of a diffusible growth factor ("activator," corresponding to TGF-beta) that stimulates production of the SAM, and another diffusible factor ("inhibitor") that suppresses the activity of the activator. We implemented the cellular automaton on a two-dimensional (2D) square lattice to emulate the quasi-2D micromass culture extensively used to study patterning in avian limb bud precartilage cells. We identified parameters that produce nodular patterns that resemble, in size and distribution, cell condensations in leg-cell cultures, thus establishing a correspondence between in vitro and in silico results. We then studied the in vitro and in silico micromass cultures experimentally. We altered the standard in vitro micromass culture by diluting the initial cell density, transiently exposing it to exogenous activator, suppressing the inhibitor, and constitutively activating fibronectin production. We altered the standard in silico micromass culture in each case by changing the corresponding parameter. In vitro and in silico experiments agreed well. We also used the model to test hypotheses for differences in the in vitro patterns of cells derived from chick embryo forelimb and hindlimb. We discuss the applicability of this model to limb development in vivo and to other organ development.


Assuntos
Condrogênese/fisiologia , Epistasia Genética , Modelos Biológicos , Algoritmos , Animais , Contagem de Células , Movimento Celular/fisiologia , Embrião de Galinha , Simulação por Computador , Fibronectinas/metabolismo , Botões de Extremidades/embriologia , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/fisiologia , Processos Estocásticos , Transfecção , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo
3.
Gene Expr Patterns ; 3(3): 285-95, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12799073

RESUMO

Alternative splicing and selective transport of RNA transcripts from cell nuclei are important regulatory mechanisms of gene expression during embryonic development. Here we report the molecular characterization and developmental expression in several tissue and organ systems of chicken hnRNP A1, a nucleo-cytoplasmic 'shuttle' protein which in mammalian systems has been shown to function in the regulation of RNA alternative splicing by antagonizing constitutive splicing factors such as SF2/ASF. We show that hnRNP A1 is represented in the chicken by a single gene which is widely expressed at early embryonic stages, with particularly high levels of expression in the brain, skin, developing gut, and other ectodermal and endodermal derivatives. At later stages, expression of its mRNA and protein product become progressively confined to specific organ primordia and cell types, where both transient and persistent expression patterns are observed. HnRNP A1 protein is expressed at sites of active neurogenesis in the developing central and peripheral nervous systems, regions of known extensive alternative splicing.


Assuntos
Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Embrião de Galinha , DNA Complementar , Perfilação da Expressão Gênica , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/biossíntese , Immunoblotting , Hibridização In Situ , Fígado/embriologia , Fígado/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Dev Biol ; 249(2): 270-82, 2002 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12221006

RESUMO

The formation of cartilage elements in the developing vertebrate limb, where they serve as primordia for the appendicular skeleton, is preceded by the appearance of discrete cellular condensations. Control of the size and spacing of these condensations is a key aspect of skeletal pattern formation. Limb bud cell cultures grown in the absence of ectoderm formed continuous sheet-like masses of cartilage. With the inclusion of ectoderm, these cultures produced one or more cartilage nodules surrounded by zones of noncartilaginous mesenchyme. Ectodermal fibroblast growth factors (FGF2 and FGF8), but not a mesodermal FGF (FGF7), substituted for ectoderm in inhibiting chondrogenic gene expression, with some combinations of the two ectodermal factors leading to well-spaced cartilage nodules of relatively uniform size. Treatment of cultures with SU5402, an inhibitor FGF receptor tyrosine kinase activity, rendered FGFs ineffective in inducing perinodular inhibition. Inhibition of production of FGF receptor 2 (FGFR2) by transfection of wing and leg cell cultures with antisense oligodeoxynucleotides blocked appearance of ectoderm- or FGF-induced zones of perinodular inhibition of chondrogenesis and, when introduced into the limb buds of developing embryos, led to shorter, thicker, and fused cartilage elements. Because FGFR2 is expressed mainly at sites of precartilage condensation during limb development in vivo and in vitro, these results suggest that activation of FGFR2 by FGFs during development elicits a lateral inhibitor of chondrogenesis that limits the expansion of developing skeletal elements.


Assuntos
Cartilagem Articular/embriologia , Embrião de Galinha/fisiologia , Ectoderma/fisiologia , Fatores de Crescimento de Fibroblastos/farmacologia , Mesoderma/fisiologia , Morfogênese/fisiologia , Proteínas Tirosina Quinases , Receptores Proteína Tirosina Quinases/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/fisiologia , Animais , Técnicas de Cultura de Células/métodos , Divisão Celular , Extremidades/embriologia , Fator 7 de Crescimento de Fibroblastos , Morfogênese/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/efeitos dos fármacos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos/efeitos dos fármacos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...