Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(3): e1009963, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35344536

RESUMO

Tessellations emerge in many natural systems, and the constituent domains often contain regular patterns, raising the intriguing possibility that pattern formation within adjacent domains might be correlated by the geometry, without the direct exchange of information between parts comprising either domain. We confirm this paradoxical effect, by simulating pattern formation via reaction-diffusion in domains whose boundary shapes tessellate, and showing that correlations between adjacent patterns are strong compared to controls that self-organize in domains with equivalent sizes but unrelated shapes. The effect holds in systems with linear and non-linear diffusive terms, and for boundary shapes derived from regular and irregular tessellations. Based on the prediction that correlations between adjacent patterns should be bimodally distributed, we develop methods for testing whether a given set of domain boundaries constrained pattern formation within those domains. We then confirm such a prediction by analysing the development of 'subbarrel' patterns, which are thought to emerge via reaction-diffusion, and whose enclosing borders form a Voronoi tessellation on the surface of the rodent somatosensory cortex. In more general terms, this result demonstrates how causal links can be established between the dynamical processes through which biological patterns emerge and the constraints that shape them.


Assuntos
Comunicação , Córtex Somatossensorial , Difusão
2.
Chaos ; 11(2): 404-409, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12779475

RESUMO

We find concrete evidence for a recently discovered form of intermittency, referred to as in-out intermittency, in both partial differential equation (PDE) and ordinary differential equation (ODE) models of mean field dynamos. This type of intermittency [introduced in P. Ashwin, E. Covas, and R. Tavakol, Nonlinearity 9, 563 (1999)] occurs in systems with invariant submanifolds and, as opposed to on-off intermittency which can also occur in skew product systems, it requires an absence of skew product structure. By this we mean that the dynamics on the attractor intermittent to the invariant manifold cannot be expressed simply as the dynamics on the invariant subspace forcing the transverse dynamics; the transverse dynamics will alter that tangential to the invariant subspace when one is far enough away from the invariant manifold. Since general systems with invariant submanifolds are not likely to have skew product structure, this type of behavior may be of physical relevance in a variety of dynamical settings. The models employed here to demonstrate in-out intermittency are axisymmetric mean-field dynamo models which are often used to study the observed large-scale magnetic variability in the Sun and solar-type stars. The occurrence of this type of intermittency in such models may be of interest in understanding some aspects of such variabilities. (c) 2001 American Institute of Physics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...