Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 49(22): 4662-71, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20441230

RESUMO

Nramp (natural resistance-associated macrophage protein) family members have been characterized in mammals, yeast, and bacteria as divalent metal ion/H(+) symporters. In previous work, a bioinformatic approach was used for the identification of residues that are conserved within the Nramp family [Haemig, H. A., and Brooker, R. J. (2004) J. Membr. Biol. 201 (2), 97-107]. On the basis of site-directed mutagenesis of highly conserved negatively charged residues, a model was proposed for the metal binding site of the Escherichia coli homologue, MntH. In this study, we have focused on the highly conserved residues, including two histidines, of transmembrane segment 6 (TMS-6). Multiple mutants were made at the eight conserved sites (i.e., Gly-205, Ala-206, Met-209, Pro-210, His-211, Leu-215, His-216, and Ser-217) in TMS-6 of E. coli MntH. Double mutants involving His-211 and His-216 were also created. The results indicate the side chain volume of these residues is critically important for function. In most cases, only substitutions that are closest in side chain volume still permit transport. In addition, the K(m) for metal binding is largely unaffected by mutations in TMS-6, whereas V(max) values were decreased in all mutants characterized kinetically. Thus, these residues do not appear to play a role in metal binding. Instead, they may comprise an important face on TMS-6 that is critical for protein conformational changes during transport. Also, in contrast to other studies, our data do not strongly indicate that the conserved histidine residues play a role in the pH regulation of metal transport.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/fisiologia , Sequência Conservada , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiologia , Conformação Proteica , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/genética , Sequência Conservada/genética , Proteínas de Escherichia coli/genética , Histidina/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína/genética , Transporte Proteico/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato/genética
2.
J Membr Biol ; 211(2): 101-13, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16988863

RESUMO

Four amino acids critical for lactose permease function were altered using site-directed mutagenesis. The resulting Quad mutant (E269Q/R302L/H322Q/E325Q) was expressed at 60% of wild-type levels but found to have negligible transport activity. The Quad mutant was used as a parental strain to isolate suppressors that regained the ability to ferment the alpha-galactoside melibiose. Six different suppressors were identified involving five discrete amino acid changes and one amino acid deletion (Q60L, V229G, Y236D, S306L, K319N and DeltaI298). All of the suppressors transported alpha-galactosides at substantial rates. In addition, the Q60L, DeltaI298 and K319N suppressors regained a small but detectable amount of lactose transport. Assays of sugar-driven cation transport showed that both the Q60L and K319N suppressors couple the influx of melibiose with cations (H(+) or H(3)O(+)). Taken together, the data show that the cation-binding domain in the lactose permease is not a fixed structure as proposed in previous models. Rather, the data are consistent with a model in which several ionizable residues form a dynamic coupling sensor that also may interact directly with the cation and lactose.


Assuntos
Cátions/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Substituição de Aminoácidos , Transporte Biológico , Western Blotting , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Lactose/metabolismo , Melibiose/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutagênese Sítio-Dirigida , Plasmídeos/genética , Tiogalactosídeos/metabolismo
3.
Biochemistry ; 42(38): 11226-33, 2003 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-14503872

RESUMO

Previous work on the lactose permease of Escherichia coli has shown that mutations along a face of predicted transmembrane segment 8 (TMS-8) play a critical role in conformational changes associated with lactose transport (Green, A. L., and Brooker, R. J. [2001] Biochemistry 40, 12220-12229). Substitutions at positions 261, 265, 268, 272, and 276, which form a continuous stripe along TMS-8, were markedly defective for lactose transport velocity. In the current study, three single mutants (F261D, N272Y, N272L) and a double mutant (T265Y/M276Y) were chosen as parental strains for the isolation of mutants that restored transport function. A total of 68 independent mutants were isolated and sequenced. Forty-four were first-site revertants in which the original mutation was changed back to the wild-type residue or to a residue with a similar side-chain volume. The other 24 mutations were second-site suppressors in TMS-2 (Q60L, Q60P), loop 2/3 (L70H), TMS-7 (V229G/A), TMS-8 (F261L), and TMS-11 (F354V, C355G). On the basis of their locations, the majority of the second-site suppressors can be interpreted as improving the putative TMS-2/TMS-7/TMS-11 interface to compensate for conformational defects imposed by mutations in TMS-8 that disrupt the putative TMS-1/TMS-5/TMS-8 interface. Overall, this paper suggests that the TMS-2/TMS-7/TMS-11 interface is more important from a functional point of view, even though there is compelling evidence for structural symmetry between the two halves of the permease.


Assuntos
Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Monossacarídeos , Simportadores , Substituição de Aminoácidos , Transporte Biológico/genética , Escherichia coli/citologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genótipo , Lactose/metabolismo , Melibiose/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Fenótipo , Plasmídeos/genética , Conformação Proteica , Supressão Genética
4.
Biochemistry ; 42(4): 1095-100, 2003 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-12549931

RESUMO

Several previous studies have suggested that glutamate-126 and arginine-144 in the lactose permease of Escherichia coli form an ion pair that is essential for sugar binding. To further investigate the role of these residues, E126Q, R144Q, and R144S mutants were made. The R144Q and R144S strains, which had negligible levels of transport, were used as parental strains to isolate suppressor mutations that partially restored sugar transport. The R144Q parent only yielded first-site revertants, but the R144S strain produced three types of second-site replacements: E126Q, V229A, and L330R. In downhill transport assays, the E126Q strain was able to transport lactose at low levels, with an apparent K(m) 3-fold higher than the wild-type strain but a severely depressed apparent V(max). A triple mutant, E126Q/R144S/V229A, showed a relatively robust V(max) value for downhill transport and could actively accumulate lactose against a concentration gradient. Taken together, these results indicate that Glu-126 and Arg-144 are not essential for sugar binding. An alternative explanation for their role in maintaining secondary structure is discussed.


Assuntos
Arginina/química , Proteínas de Escherichia coli/química , Ácido Glutâmico/química , Proteínas de Membrana Transportadoras/química , Proteínas de Transporte de Monossacarídeos , Simportadores , Sequência de Aminoácidos , Arginina/genética , Transporte Biológico/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Galactose/metabolismo , Genes Supressores , Glucose/metabolismo , Ácido Glutâmico/genética , Ligação de Hidrogênio , Cinética , Lactose/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Plasmídeos , Estrutura Secundária de Proteína/genética , Transformação Genética
5.
Biochemistry ; 41(23): 7366-72, 2002 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-12044169

RESUMO

The lactose permease of Escherichia coli transports protons and lactose across the plasma membrane and uses a transmembrane ion gradient as the energy source to drive the uphill accumulation of lactose. In this report, the effect of the electrochemical gradient on the permease has been studied. Bacteriorhodopsin was co-reconstituted with the lactose permease to provide a light-triggered electrochemical gradient. Reaction-induced Fourier transform infrared spectra were acquired, and bacteriorhodopsin contributions were subtracted. In previous work, positive bands in the 1765-1730 cm(-1) region of the reaction-induced FT-IR spectrum were attributed to the perturbation of carboxylic acid residues in the permease [Patzlaff, J. S., Brooker, R. J., and Barry, B. A. (2000) J. Biol. Chem. 275, 28695-28700]. In this study, we have globally labeled the permease with (13)C or (15)N. Isotopic labeling demonstrates that features in the reaction-induced FT-IR spectrum arise from permease carboxylic acid, amide I, and amide II vibrational modes. In addition, isotope labeling leads to a tentative assignment of spectral features to lysine, arginine, histidine, glutamine, and/or asparagine in the permease. These results indicate that the electrochemical gradient causes changes in the environment or protonation state of carboxylic acid residues in the permease and suggest an interaction between these carboxylic acid side chains and nitrogen-containing amino acid side chains. Evidence for a change in secondary structure, corresponding to an interconversion of secondary structural elements, a change in the hydrogen-bonding strength, or coupling of peptide vibrational modes, is also presented. These experiments demonstrate the usefulness of reaction-induced spectroscopy in the study of transmembrane transport.


Assuntos
Isótopos de Carbono/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Monossacarídeos , Isótopos de Nitrogênio/metabolismo , Simportadores/química , Simportadores/metabolismo , Bacteriorodopsinas/metabolismo , Eletroquímica , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Marcação por Isótopo/métodos , Fotólise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...