Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 15907, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162910

RESUMO

Synthesis of homogenous glycans in quantitative yields represents a major bottleneck to the production of molecular tools for glycoscience, such as glycan microarrays, affinity resins, and reference standards. Here, we describe a combined biological/enzymatic synthesis that is capable of efficiently converting microbially-derived precursor oligosaccharides into structurally uniform human-type N-glycans. Unlike starting material obtained by chemical synthesis or direct isolation from natural sources, which can be time consuming and costly to generate, our approach involves precursors derived from renewable sources including wild-type Saccharomyces cerevisiae glycoproteins and lipid-linked oligosaccharides from glycoengineered Escherichia coli. Following deglycosylation of these biosynthetic precursors, the resulting microbial oligosaccharides are subjected to a greatly simplified purification scheme followed by structural remodeling using commercially available and recombinantly produced glycosyltransferases including key N-acetylglucosaminyltransferases (e.g., GnTI, GnTII, and GnTIV) involved in early remodeling of glycans in the mammalian glycosylation pathway. Using this approach, preparative quantities of hybrid and complex-type N-glycans including asymmetric multi-antennary structures were generated and subsequently used to develop a glycan microarray for high-throughput, fluorescence-based screening of glycan-binding proteins. Taken together, these results confirm our combined synthesis strategy as a new, user-friendly route for supplying chemically defined human glycans simply by combining biosynthetically-derived precursors with enzymatic remodeling.


Assuntos
Escherichia coli/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeos/biossíntese , Bibliotecas de Moléculas Pequenas , Glicosiltransferases/isolamento & purificação , Glicosiltransferases/metabolismo , Humanos , Lectinas/metabolismo , Polissacarídeos/química , Saccharomyces cerevisiae/metabolismo
2.
J Immunol ; 197(4): 1343-52, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27421483

RESUMO

TLR9 is an innate immune receptor important for recognizing DNA of host and foreign origin. A mechanism proposed to prevent excessive response to host DNA is the requirement for proteolytic cleavage of TLR9 in endosomes to generate a mature form of the receptor (TLR9(471-1032)). We previously described another cleavage event in the juxtamembrane region of the ectodomain that generated a dominant-negative form of TLR9. Thus, there are at least two independent cleavage events that regulate TLR9. In this study, we investigated whether an N-terminal fragment of TLR9 could be responsible for regulation of the mature or negative-regulatory form. We show that TLR9(471-1032), corresponding to the proteolytically cleaved form, does not function on its own. Furthermore, activity is not rescued by coexpression of the N-terminal fragment (TLR9(1-440)), inclusion of the hinge region (TLR9(441-1032)), or overexpression of UNC93B1, the last of which is critical for trafficking and cleavage of TLR9. TLR9(1-440) coimmunoprecipitates with full-length TLR9 and TLR9(471-1032) but does not rescue the native glycosylation pattern; thus, inappropriate trafficking likely explains why TLR9(471-1032) is nonfunctional. Lastly, we show that TLR9(471-1032) is also a dominant-negative regulator of TLR9 signaling. Together, these data provide a new perspective on the complexity of TLR9 regulation by proteolytic cleavage and offer potential ways to inhibit activity through this receptor, which may dampen autoimmune inflammation.


Assuntos
Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunoprecipitação , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Proteólise
3.
Biochem Biophys Res Commun ; 421(4): 780-4, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22554506

RESUMO

Nucleic acid-sensing Toll-like receptors (TLRs) initiate innate immune responses to foreign RNA and DNA, yet can detect and respond to host DNA. To avoid autoimmune pathologies, nucleic acid sensing TLRs are tightly regulated. TLR9 primarily resides in the endoplasmic reticulum, traffics to endosomes, is proteolytically processed and responds to DNA. The heat shock protein gp96 is one of several accessory proteins that regulate intracellular trafficking of TLR9. In the absence of gp96, TLR9 fails to exit the endoplasmic reticulum, and therefore gp96-deficient macrophages fail to respond to CpG DNA. However, absence of gp96 precludes studies on potential chaperoning functions of gp96 for TLR9. Here we demonstrate that pharmacologic interference with gp96 function inhibits TLR9 signaling. TLR9 remains associated with gp96 during intracellular trafficking, and gp96-specific inhibitors increase TLR9 sensitivity to proteolytic degradation. We propose that gp96 is critical for both TLR9 egress from the ER, and for protein conformational stability in the endosomal compartment. These studies highlight the importance of examining gp96-specific inhibitors for modulating TLR9 activation, and the treatment autoimmune diseases.


Assuntos
Doenças Autoimunes/metabolismo , Proteínas de Choque Térmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptor Toll-Like 9/química , Receptor Toll-Like 9/metabolismo , Animais , Ilhas de CpG/imunologia , DNA/imunologia , Retículo Endoplasmático/metabolismo , Células HEK293 , Proteínas de Choque Térmico/antagonistas & inibidores , Humanos , Glicoproteínas de Membrana/antagonistas & inibidores , Camundongos , Proteólise
4.
Eur J Immunol ; 41(8): 2176-84, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21604257

RESUMO

Nucleic acid structures are highly conserved through evolution and when self nucleic acids are aberrantly detected by toll-like receptors (TLRs) they contribute to autoimmune disease. For this reason, multiple regulatory mechanisms exist to prevent immune responses to self nucleic acids. TLR9 is a nucleic acid-sensing TLR that is regulated at multiple levels including association with accessory proteins, intracellular localization and proteolytic processing. In the endolysosomal compartment TLR9 is proteolytically processed to an 80 kDa form (p80) and this processing is a prerequisite for activation. Here, we identified a soluble form of TLR9 (sTLR9) generated by a novel proteolytic event that cleaved TLR9 between amino acids 724-735. Similar to p80, sTLR9 was generated in endosomes. However, generation of sTLR9 was independent of the cysteine protease cathepsin B, active at acidic pH, but partially dependent on cathepsin S, a protease active at neutral pH. Most importantly, sTLR9 inhibited TLR9-dependent signaling. Altogether, these data support a model where an intrinsic proteolytic processing mechanism negatively regulates TLR9 signaling. A proper balance between the independent proteolytic events probabably contributes to regulation of TLR9-mediated innate immunity and prevention of autoimmune disease.


Assuntos
Catepsinas/metabolismo , Endossomos/metabolismo , Transdução de Sinais , Receptor Toll-Like 9/metabolismo , Animais , Catepsinas/genética , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Immunoblotting , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia Confocal , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Interferência de RNA , Solubilidade , Receptor Toll-Like 9/química , Receptor Toll-Like 9/genética
5.
Immunol Cell Biol ; 87(3): 209-17, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19079358

RESUMO

Toll-like receptor 9 (TLR9) promiscuously binds self- and microbial DNA, but only microbial DNA elicits an inflammatory response. How TLR9 discriminates between self- and foreign DNA is unclear, but inappropriate localization of TLR9 permits response to self-DNA, suggesting that TLR9 localization and trafficking are critical components. The molecular mechanisms controlling the movement of TLR9 may provide new insight into the recognition of DNA in normal and in pathological conditions such as autoimmune systemic lupus erythematosus. We have shown earlier that TLR9 is retained in the endoplasmic reticulum (ER) and it moves to endolysosomes to recognize CpG DNA. Other studies have suggested that TLR9 bypasses the Golgi complex to access endolysosomes. Here, we show that TLR9 translocates from ER to endolysosomes through the Golgi complex and that Golgi export is required for optimal TLR9 signaling. In all, 6-13% of TLR9 constitutively exits the ER, moves through the Golgi complex and resides in lysosomal-associated membrane protein-1-positive vesicles. TLR9 bound to CpG DNA had glycan modifications indicative of Golgi processing confirming that TLR9 travels through the Golgi complex to access CpG DNA in endolysosomes. Together, these data support a model where TLR9 uses traditional secretory pathways and does not bypass the Golgi complex.


Assuntos
Ilhas de CpG/imunologia , DNA/metabolismo , Complexo de Golgi/metabolismo , Lisossomos/imunologia , Receptor Toll-Like 9/metabolismo , Brefeldina A/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/fisiologia , Células HeLa , Humanos , Lisossomos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/imunologia , NF-kappa B/metabolismo , Transporte Proteico
6.
J Biol Chem ; 281(46): 35585-92, 2006 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-16990271

RESUMO

Toll-like receptors (TLRs) are essential for host defense. Although several TLRs reside on the cell surface, nucleic acid recognition of TLRs occurs intracellularly. For example, the receptor for CpG containing bacterial and viral DNA, TLR9, is retained in the endoplasmic reticulum. Recent evidence suggests that the localization of TLR9 is critical for appropriate ligand recognition. Here we have defined which structural features of the TLR9 molecule control its intracellular localization. Both the cytoplasmic and ectodomains of TLR9 contain sufficient information, whereas the transmembrane domain plays no role in intracellular localization. We identify a 14-amino acid stretch that directs TLR9 intracellularly and confers intracellular localization to the normally cell surface-expressed TLR4. Truncation or mutation of the cytoplasmic tail of TLR9 reveals a vesicle localization motif that targets early endosomes. We propose a model whereby modification of the cytoplasmic tail of TLR9 results in trafficking to early endosomes where it encounters CpG DNA.


Assuntos
Citoplasma/metabolismo , Receptor Toll-Like 9/metabolismo , Motivos de Aminoácidos/fisiologia , Animais , Linhagem Celular , Ilhas de CpG , DNA/química , DNA/metabolismo , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...