Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 9(8): 220397, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35991333

RESUMO

This comment addresses the incomplete presentation and incorrect conclusion offered in the recent manuscript of Beck et al. (R. Soc. Open Sci. 9, 211799 (doi:10.1098/rsos.211799)). The manuscript introduces biomechanical and performance data on the fastest-ever, bilateral amputee 400 m runner. Using an advantage standard of not faster than the fastest non-amputee runner ever (i.e. performance superior to that of the intact-limb world record-holder), the Beck et al. manuscript concludes that sprint running performance on bilateral, lower-limb prostheses is not unequivocally advantageous compared to the biological limb condition. The manuscript acknowledges the long-standing support of the authors for the numerous eligibility applications of the bilateral-amputee athlete. However, it does not acknowledge that the athlete's anatomically disproportionate prosthetic limb lengths (+15 cm versus the World Para Athletics maximum) are ineligible in both Olympic and Paralympic track competition due to their performance-enhancing properties. Also not acknowledged are the slower sprint performances of the bilateral-amputee athlete on limbs of shorter length that directly refute their manuscript's primary conclusion. Our contribution here provides essential background information and data not included in the Beck et al. manuscript that make the correct empirical conclusion clear: artificially long legs artificially enhance long sprint running performance.

2.
Gait Posture ; 94: 114-118, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276457

RESUMO

BACKGROUND: Synchronized arm and leg motion are characteristic of human running. Leg motion is an obvious gait requirement, but arm motion is not, and its functional contribution to running performance is not known. Because arm-leg coupling serves to reduce rotation about the body's vertical axis, arm motion may be necessary to achieve the body positions that optimize ground force application and performance. RESEARCH QUESTION: Does restricting arm motion compromise performance in short sprints? METHODS: Sprint performance was measured in 17 athletes during normal and restricted arm motion conditions. Restriction was self-imposed via arm folding across the chest with each hand on the opposite shoulder. Track and field (TF, n = 7) and team sport (TS, n = 10) athletes completed habituation and performance test sessions that included six counterbalanced 30 m sprints: three each in normal and restricted arm conditions. TS participants performed standing starts in both conditions. TF participants performed block starts with extended arms for the normal condition and elevated platform support of the elbows for the crossed-arm, restricted condition. Instantaneous velocity was measured throughout each trial using a radar device. Average sprint performance times were compared using a Repeated Measures ANOVA with Tukey post-hoc tests for the entire group and for the TF and TS subgroups. RESULTS: The 30 m times were faster for normal vs. restricted arm conditions, but the between-condition difference was only 1.6% overall and < 0.10 s for the entire group (4.82 ± 0.46 s vs. 4.90 ± 0.46 s, respectively; p < 0.001) and both TF (4.55 ± 0.34 vs. 4.63 ± 0.32 s; p < 0.001) and TS subgroups (5.01 ± 0.46 vs. 5.08 ± 0.47 s; p < 0.001). SIGNIFICANCE: Our findings suggest that when arm motion is restricted, compensatory upper body motions can provide the rotational forces needed to offset the lower body angular momentum generated by the swinging legs. We conclude that restricting arm motion compromised short sprint running performance, but only marginally.


Assuntos
Desempenho Atlético , Corrida , Aceleração , Atletas , Fenômenos Biomecânicos , Marcha , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...