Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 432(24): 166698, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33157085

RESUMO

More than a million Okazaki fragments are synthesized, processed and joined during replication of the human genome. After synthesis of an RNA-DNA oligonucleotide by DNA polymerase α holoenzyme, proliferating cell nuclear antigen (PCNA), a homotrimeric DNA sliding clamp and polymerase processivity factor, is loaded onto the primer-template junction by replication factor C (RFC). Although PCNA interacts with the enzymes DNA polymerase δ (Pol δ), flap endonuclease 1 (FEN1) and DNA ligase I (LigI) that complete Okazaki fragment processing and joining, it is not known how the activities of these enzymes are coordinated. Here we describe a novel interaction between Pol δ and LigI that is critical for Okazaki fragment joining in vitro. Both LigI and FEN1 associate with PCNA-Pol δ during gap-filling synthesis, suggesting that gap-filling synthesis is carried out by a complex of PCNA, Pol δ, FEN1 and LigI. Following ligation, PCNA and LigI remain on the DNA, indicating that Pol δ and FEN1 dissociate during 5' end processing and that LigI engages PCNA at the DNA nick generated by FEN1 and Pol δ. Thus, dynamic PCNA complexes coordinate Okazaki fragment synthesis and processing with PCNA and LigI forming a terminal structure of two linked protein rings encircling the ligated DNA.


Assuntos
DNA Ligase Dependente de ATP/genética , DNA Polimerase III/genética , Endonucleases Flap/genética , Antígeno Nuclear de Célula em Proliferação/genética , DNA/biossíntese , DNA/genética , DNA Ligases/genética , DNA Polimerase I/genética , Replicação do DNA/genética , Genoma Humano/genética , Holoenzimas/genética , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Ligação Proteica/genética , Proteína de Replicação C/genética
2.
DNA Repair (Amst) ; 43: 18-23, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27235626

RESUMO

DNA ligases are attractive therapeutics because of their involvement in completing the repair of almost all types of DNA damage. A series of DNA ligase inhibitors with differing selectivity for the three human DNA ligases were identified using a structure-based approach with one of these inhibitors being used to inhibit abnormal DNA ligase IIIα-dependent repair of DNA double-strand breaks (DSB)s in breast cancer, neuroblastoma and leukemia cell lines. Raghavan and colleagues reported the characterization of a derivative of one of the previously identified DNA ligase inhibitors, which they called SCR7 (designated SCR7-R in our experiments using SCR7). SCR7 appeared to show increased selectivity for DNA ligase IV, inhibit the repair of DSBs by the DNA ligase IV-dependent non-homologous end-joining (NHEJ) pathway, reduce tumor growth, and increase the efficacy of DSB-inducing therapeutic modalities in mouse xenografts. In attempting to synthesize SCR7, we encountered problems with the synthesis procedures and discovered discrepancies in its reported structure. We determined the structure of a sample of SCR7 and a related compound, SCR7-G, that is the major product generated by the published synthesis procedure for SCR7. We also found that SCR7-G has the same structure as the compound (SCR7-X) available from a commercial vendor (XcessBio). The various SCR7 preparations had similar activity in DNA ligation assay assays, exhibiting greater activity against DNA ligases I and III than DNA ligase IV. Furthermore, SCR7-R failed to inhibit DNA ligase IV-dependent V(D)J recombination in a cell-based assay. Based on our results, we conclude that SCR7 and the SCR7 derivatives are neither selective nor potent inhibitors of DNA ligase IV.


Assuntos
Antineoplásicos/farmacologia , DNA Ligase Dependente de ATP/genética , DNA/genética , Inibidores Enzimáticos/farmacologia , Pirimidinas/farmacologia , Bases de Schiff/farmacologia , Animais , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , DNA Ligase Dependente de ATP/antagonistas & inibidores , DNA Ligase Dependente de ATP/metabolismo , Inibidores Enzimáticos/síntese química , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Leucócitos/patologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Pirimidinas/síntese química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Bases de Schiff/síntese química , Especificidade por Substrato , Carga Tumoral/efeitos dos fármacos , Recombinação V(D)J/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...