Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Transl Psychiatry ; 12(1): 106, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292625

RESUMO

We previously linked TSHZ3 haploinsufficiency to autism spectrum disorder (ASD) and showed that embryonic or postnatal Tshz3 deletion in mice results in behavioral traits relevant to the two core domains of ASD, namely social interaction deficits and repetitive behaviors. Here, we provide evidence that cortical projection neurons (CPNs) and striatal cholinergic interneurons (SCINs) are two main and complementary players in the TSHZ3-linked ASD syndrome. In the cerebral cortex, TSHZ3 is expressed in CPNs and in a proportion of GABAergic interneurons, but not in cholinergic interneurons or glial cells. In the striatum, TSHZ3 is expressed in all SCINs, while its expression is absent or partial in the other main brain cholinergic systems. We then characterized two new conditional knockout (cKO) models generated by crossing Tshz3flox/flox with Emx1-Cre (Emx1-cKO) or Chat-Cre (Chat-cKO) mice to decipher the respective role of CPNs and SCINs. Emx1-cKO mice show altered excitatory synaptic transmission onto CPNs and impaired plasticity at corticostriatal synapses, with neither cortical neuron loss nor abnormal layer distribution. These animals present social interaction deficits but no repetitive patterns of behavior. Chat-cKO mice exhibit no loss of SCINs but changes in the electrophysiological properties of these interneurons, associated with repetitive patterns of behavior without social interaction deficits. Therefore, dysfunction in either CPNs or SCINs segregates with a distinct ASD behavioral trait. These findings provide novel insights onto the implication of the corticostriatal circuitry in ASD by revealing an unexpected neuronal dichotomy in the biological background of the two core behavioral domains of this disorder.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Haploinsuficiência , Interneurônios , Camundongos , Sinapses
3.
FASEB J ; 35(12): e22025, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34758144

RESUMO

Mepyramine, a first-generation antihistamine targeting the histamine H(1) receptor, was extensively prescribed to patients suffering from allergic reactions and urticaria. Serious adverse effects, especially in case of overdose, were frequently reported, including drowsiness, impaired thinking, convulsion, and coma. Many of these side effects were associated with the blockade of histaminergic or cholinergic receptors. Here we show that mepyramine directly inhibits a variety of voltage-gated sodium channels, including the Tetrodotoxin-sensitive isoforms and the main isoforms (Nav1.7, Nav1.8, and Nav1.9) of nociceptors. Estimated IC50 were within the range of drug concentrations detected in poisoned patients. Mepyramine inhibited sodium channels through fast- or slow-inactivated state preference depending on the isoform. Moreover, mepyramine inhibited the firing responses of C- and Aß-type nerve fibers in ex vivo skin-nerve preparations. Locally applied mepyramine had analgesic effects on the scorpion toxin-induced excruciating pain and produced pain relief in acute, inflammatory, and chronic pain models. Collectively, these data provide evidence that mepyramine has the potential to be developed as a topical analgesic agent.


Assuntos
Artrite Experimental/complicações , Gânglios Espinais/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.8/fisiologia , Nociceptores/efeitos dos fármacos , Dor/tratamento farmacológico , Pirilamina/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Potenciais de Ação , Animais , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Antagonistas dos Receptores Histamínicos H1/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.8/química , Nociceptores/metabolismo , Nociceptores/patologia , Dor/etiologia , Dor/metabolismo , Dor/patologia
4.
Cell Rep ; 37(5): 109914, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731626

RESUMO

A variety of mechanosensory neurons are involved in touch, proprioception, and pain. Many molecular components of the mechanotransduction machinery subserving these sensory modalities remain to be discovered. Here, we combine recordings of mechanosensitive (MS) currents in mechanosensory neurons with single-cell RNA sequencing. Transcriptional profiles are mapped onto previously identified sensory neuron types to identify cell-type correlates between datasets. Correlation of current signatures with single-cell transcriptomes provides a one-to-one correspondence between mechanoelectric properties and transcriptomically defined neuronal populations. Moreover, a gene-expression differential comparison provides a set of candidate genes for mechanotransduction complexes. Piezo2 is expectedly found to be enriched in rapidly adapting MS current-expressing neurons, whereas Tmem120a and Tmem150c, thought to mediate slow-type MS currents, are uniformly expressed in all mechanosensory neuron subtypes. Further knockdown experiments disqualify them as mediating MS currents in sensory neurons. This dataset constitutes an open resource to explore further the cell-type-specific determinants of mechanosensory properties.


Assuntos
Gânglios Espinais/metabolismo , Perfilação da Expressão Gênica , Mecanotransdução Celular/genética , Neurônios/metabolismo , Transcriptoma , Animais , Gânglios Espinais/citologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Potenciais da Membrana , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Técnicas de Patch-Clamp , RNA-Seq , Análise de Célula Única
5.
Nat Commun ; 9(1): 3804, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228263

RESUMO

Defects in cerebrospinal fluid (CSF) flow may contribute to idiopathic scoliosis. However, the mechanisms underlying detection of CSF flow in the central canal of the spinal cord are unknown. Here we demonstrate that CSF flows bidirectionally along the antero-posterior axis in the central canal of zebrafish embryos. In the cfap298tm304 mutant, reduction of cilia motility slows transport posteriorly down the central canal and abolishes spontaneous activity of CSF-contacting neurons (CSF-cNs). Loss of the sensory Pkd2l1 channel nearly abolishes CSF-cN calcium activity and single channel opening. Recording from isolated CSF-cNs in vitro, we show that CSF-cNs are mechanosensory and require Pkd2l1 to respond to pressure. Additionally, adult pkd2l1 mutant zebrafish develop an exaggerated spine curvature, reminiscent of kyphosis in humans. These results indicate that CSF-cNs are mechanosensory cells whose Pkd2l1-driven spontaneous activity reflects CSF flow in vivo. Furthermore, Pkd2l1 in CSF-cNs contributes to maintenance of natural curvature of the spine.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Mecanotransdução Celular , Neurônios/metabolismo , Medula Espinal/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Cílios/metabolismo
7.
Neuron ; 94(2): 266-270.e3, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28426961

RESUMO

A gold standard for characterizing mechanically activated (MA) currents is via heterologous expression of candidate channels in naive cells. Two recent studies described MA channels using this paradigm. TMEM150c was proposed to be a component of an MA channel partly based on a heterologous expression approach (Hong et al., 2016). In another study, Piezo1's N-terminal "propeller" domain was proposed to constitute an intrinsic mechanosensitive module based on expression of a chimera between a pore-forming domain of the mechanically insensitive ASIC1 channel and Piezo1 (Zhao et al., 2016). When we attempted to replicate these results, we found each construct conferred modest MA currents in a small fraction of naive HEK cells similar to the published work. Strikingly, these MA currents were not detected in cells in which endogenous Piezo1 was CRISPR/Cas9 inactivated. These results highlight the importance of choosing cells lacking endogenous MA channels to assay the mechanotransduction properties of various proteins. This Matters Arising paper is in response to Hong et al. (2016) and Zhao et al. (2016) in Neuron. See also the response papers by Hong et al. (2017) and Zhao et al. (2017) published concurrently with this Matters Arising.


Assuntos
Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Neurônios/metabolismo , Transporte Biológico , Linhagem Celular , Humanos , Mutagênese Insercional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...