Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 192: 106213, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783159

RESUMO

The interpretation of δ13C values in trophic ecology requires standardization of the lipid content of organisms estimated through their C:N ratio. To avoid time-consuming lipid extractions, the use of mathematical corrections has been developed for many years, and the conclusions generally point in the direction of species-specific adjustment of the models. This study aimed at defining the maximum taxonomic level required to obtain the best corrected δ13C values in small pelagic fish of the order Clupeiformes. δ13C values of six species were analyzed bulk and lipid-free, and were used to fit and validate linear and mass-balance models at different taxonomic levels. Despite a species effect combined with the C:N ratio effect, the corrected δ13C values produced by a global model for the Clupeiformes were as good as or better when compared to lipid-free samples than those produced by species-specific models, paving the way for possible generalization to other species in this order. At the order level, the linear model outperformed the mass-balance model.


Assuntos
Peixes , Lipídeos , Animais , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Oceano Atlântico , Cadeia Alimentar
2.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34983875

RESUMO

Pacific Ocean tuna is among the most-consumed seafood products but contains relatively high levels of the neurotoxin methylmercury. Limited observations suggest tuna mercury levels vary in space and time, yet the drivers are not well understood. Here, we map mercury concentrations in skipjack tuna across the Pacific Ocean and build generalized additive models to quantify the anthropogenic, ecological, and biogeochemical drivers. Skipjack mercury levels display a fivefold spatial gradient, with maximum concentrations in the northwest near Asia, intermediate values in the east, and the lowest levels in the west, southwest, and central Pacific. Large spatial differences can be explained by the depth of the seawater methylmercury peak near low-oxygen zones, leading to enhanced tuna mercury concentrations in regions where oxygen depletion is shallow. Despite this natural biogeochemical control, the mercury hotspot in tuna caught near Asia is explained by elevated atmospheric mercury concentrations and/or mercury river inputs to the coastal shelf. While we cannot ignore the legacy mercury contribution from other regions to the Pacific Ocean (e.g., North America and Europe), our results suggest that recent anthropogenic mercury release, which is currently largest in Asia, contributes directly to present-day human mercury exposure.


Assuntos
Mercúrio/análise , Compostos de Metilmercúrio/análise , Atum , Animais , Ásia , Ecologia , Monitoramento Ambiental/métodos , Europa (Continente) , Cadeia Alimentar , Sedimentos Geológicos/química , Humanos , Metilação , Modelos Teóricos , América do Norte , Oceano Pacífico , Alimentos Marinhos , Água do Mar , Poluentes da Água , Poluentes Químicos da Água/análise
3.
Mar Environ Res ; 173: 105514, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34753048

RESUMO

Food characteristics are amongst the most influential factors determining the fish life history traits as quantitative and qualitative changes in individuals' diet can lead to a decline in the energy allocated to their growth, and hence influence natural populations' characteristics. The size-at-age and weight of European sardines (Sardina pilchardus) in the Bay of Biscay (BoB) have decreased substantially over the last decade, especially for the youngest age classes, and the factors underlying such changes have not yet been identified. We therefore analysed the fatty acid (FA) composition in the neutral (NL) and polar (PL) lipids in samples collected across the BoB to determine whether the diet of sardines changes with their ages. We found that the total FA contents in both lipid fractions varied mainly with the sampling locations and age. Indeed, sardines aged 1 and 2 years living in South BoB had particularly high contents in FA specific to non-diatom phytoplankton, while older sardines living in the Northern part had higher total FA content and more FA specific to copepods. These differences probably resulted from differences in prey availability and to a lesser extend a change in feeding behaviour with age. The strong dependence of younger sardines' diet to phytoplankton in spring suggests that changes in primary production may explain their decline in size-at-age. Finally, NL clearly reflect finest feeding variations in comparison to PL imprinted by diet variations at longer time scale. Future studies should consider separately NL and PL fractions.


Assuntos
Baías , Ácidos Graxos , Animais , Peixes , Humanos , Lipídeos , Alimentos Marinhos
4.
Mar Environ Res ; 170: 105441, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34411887

RESUMO

Animal mortality is difficult to observe in marine systems, preventing a mechanistic understanding of major drivers of fish population dynamics. In particular, starvation is known to be a major cause of mortality at larval stages, but adult mortality is often unknown. In this study, we used a laboratory food-deprivation experiment, on wild caught sardine Sardina pilchardus from the Gulf of Lions. This population is interesting because mean individual phenotype shifted around 2008, becoming dominated by small, young individuals in poor body condition, a phenomenon that may result from declines in energy availability. Continuous monitoring of body mass loss and metabolic rate in 78 captive food-deprived individuals revealed that sardines could survive for up to 57 days on body reserves. Sardines submitted to long-term caloric restriction prior to food-deprivation displayed adaptive phenotypic plasticity, reducing metabolic energy expenditure and enduring starvation for longer than sardines that had not been calorie-restricted. Overall, entry into critical fasting phase 3 occurred at a body condition of 0.72. Such a degree of leanness has rarely been observed over 34 years of wild population monitoring. Still, the proportion of sardines below this threshold has doubled since 2008 and is maximal in January and February (the peak of the reproductive season), now reaching almost 10 % of the population at that time. These results indicate that the demographic changes observed in the wild may result in part from starvation-related adult mortality at the end of the winter reproductive period, despite adaptive plastic responses.


Assuntos
Peixes , Alimentos Marinhos , Animais , Humanos , Larva , Dinâmica Populacional , Estações do Ano
5.
Glob Chang Biol ; 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33368899

RESUMO

Climate change has resulted in physical and biological changes in the world's oceans. How the effects of these changes are buffered by top predator populations, and therefore how much plasticity lies at the highest trophic levels, are largely unknown. Here endocrine profiling, longitudinal observations of known individuals over 15 years between 2004 and 2018, and environmental data are combined to examine how the reproductive success of a top marine predator is being affected by ecosystem change. The Gulf of St. Lawrence, Canada, is a major summer feeding ground for humpback whales (Megaptera novaeangliae) in the North Atlantic. Blubber biopsy samples (n = 185) of female humpback whales were used to investigate variation in pregnancy rates through the quantification of progesterone. Annual pregnancy rates showed considerable variability, with no overall change detected over the study. However, a total of 457 photo-identified adult female sightings records with/without calves were collated, and showed that annual calving rates declined significantly. The probability of observing cow-calf pairs was related to favourable environmental conditions in the previous year; measured by herring spawning stock biomass, Calanus spp. abundance, overall copepod abundance and phytoplankton bloom magnitude. Approximately 39% of identified pregnancies were unsuccessful over the 15 years, and the average annual pregnancy rate was higher than the average annual calving rate at ~37% and ~23% respectively. Together, these data suggest that the declines in reproductive success could be, at least in part, the result of females being unable to accumulate the energy reserves necessary to maintain pregnancy and/or meet the energetic demands of lactation in years of poorer prey availability rather than solely an inability to become pregnant. The decline in calving rates over a period of major environmental variability may suggest that this population has limited resilience to such ecosystem change.

6.
Sci Rep ; 10(1): 16064, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999410

RESUMO

Recruitment is one of the dominant processes regulating fish population productivity. It is, however, notoriously difficult to predict, as it is the result of a complex multi-step process. Various fine-scale drivers might act on the pathway from adult population characteristics to spawning behaviour and egg production, and then to recruitment. Here, we provide a holistic analysis of the Northwest Atlantic mackerel recruitment process from 1982 to 2017 and exemplify why broad-scale recruitment-environment relationships could become unstable over time. Various demographic and environmental drivers had a synergetic effect on recruitment, but larval survival through a spatio-temporal match with prey was shown to be the key process. Recruitment was also mediated by maternal effects and a parent-offspring fitness trade-off due to the different feeding regimes of adults and larvae. A mismatch curtails the effects of high larval prey densities, so that despite the abundance of food in recent years, recruitment was relatively low and the pre-existing relationship with overall prey abundance broke down. Our results reaffirm major recruitment hypotheses and demonstrate the importance of fine-scale processes along the recruitment pathway, helping to improve recruitment predictions and potentially fisheries management.


Assuntos
Pesqueiros , Peixes , Animais , Oceano Atlântico , Canadá , Feminino , Pesqueiros/história , Pesqueiros/organização & administração , Pesqueiros/estatística & dados numéricos , Peixes/crescimento & desenvolvimento , Peixes/fisiologia , Cadeia Alimentar , História do Século XX , História do Século XXI , Larva/crescimento & desenvolvimento , Masculino , Modelos Biológicos , Perciformes/crescimento & desenvolvimento , Perciformes/fisiologia , Dinâmica Populacional/história , Reprodução/fisiologia
7.
PLoS One ; 14(9): e0222472, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31545816

RESUMO

The true spatiotemporal structure of a fish population is often more complex than represented in assessments because movement between spawning components is disregarded and data at the necessary scale are unavailable. This can generate poor advice. We explore the impacts of modelling choices and their associated risks given limited data and lack of biological knowledge on spawning component structure and connectivity. Pseudo-data for an age structured fish population were simulated with two spawning components that experience various levels of connectivity and that might overlap during a certain period but segregate during reproduction. A variety of implicit spatiotemporal and simpler models were fitted to the pseudo-datasets, mimicking different situations of data availability. To reproduce the true stock characteristics, the spatiotemporal models required total catch data disaggregated by spawning component; however, catch-at-age was not as important nor were disaggregated biomass indices to reproduce true dynamics. Even with just 5% connectivity between spawning components, both the spatiotemporal models and simpler alternatives generally overestimated stock biomass. Although bias was smallest when considering one unit population, spawning components might still need to be considered for management and conservation. In such case, the spatiotemporal model was less influenced by ignored connectivity patterns compared to a model focussing on one spawning component only.


Assuntos
Pesqueiros , Animais , Peixes/fisiologia , Modelos Estatísticos , Dinâmica Populacional , Reprodução , Estações do Ano , Análise Espaço-Temporal
8.
R Soc Open Sci ; 3(10): 160202, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27853538

RESUMO

Limited resources in the environment prevent individuals from simultaneously maximizing all life-history traits, resulting in trade-offs. In particular, the cost of reproduction is well known to negatively affect energy investment in growth and maintenance. Here, we investigated these trade-offs during contrasting periods of high versus low fish size and body condition (before/after 2008) in the Gulf of Lions. Female reproductive allocation and performance in anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) were examined based on morphometric historical data from the 1970s and from 2003 to 2015. Additionally, potential maternal effects on egg quantity and quality were examined in 2014/2015. After 2008, the gonadosomatic index increased for sardine and remained steady for anchovy, while a strong decline in mean length at first maturity indicated earlier maturation for both species. Regarding maternal effects, for both species egg quantity was positively linked to fish size but not to fish lipid reserves, while the egg quality was positively related to lipid reserves. Atresia prevalence and intensity were rather low regardless of fish condition and size. Finally, estimations of total annual numbers of eggs spawned indicated a sharp decrease for sardine since 2008 but a slight increase for anchovy during the last 5 years. This study revealed a biased allocation towards reproduction in small pelagic fish when confronted with a really low body condition. This highlights that fish can maintain high reproductive investment potentially at the cost of other traits which might explain the present disappearance of old and large individuals in the Gulf of Lions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...