Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(21): 9200-9212, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38743440

RESUMO

In a boreal acidic sulfate-rich subsoil (pH 3-4) developing on sulfidic and organic-rich sediments over the past 70 years, extensive brownish-to-yellowish layers have formed on macropores. Our data reveal that these layers ("macropore surfaces") are strongly enriched in 1 M HCl-extractable reactive iron (2-7% dry weight), largely bound to schwertmannite and 2-line ferrihydrite. These reactive iron phases trap large pools of labile organic matter (OM) and HCl-extractable phosphorus, possibly derived from the cultivated layer. Within soil aggregates, the OM is of a different nature from that on the macropore surfaces but similar to that in the underlying sulfidic sediments (C-horizon). This provides evidence that the sedimentary OM in the bulk subsoil has been largely preserved without significant decomposition and/or fractionation, likely due to physiochemical stabilization by the reactive iron phases that also existed abundantly within the aggregates. These findings not only highlight the important yet underappreciated roles of iron oxyhydroxysulfates in OM/nutrient storage and distribution in acidic sulfate-rich and other similar environments but also suggest that boreal acidic sulfate-rich subsoils and other similar soil systems (existing widely on coastal plains worldwide and being increasingly formed in thawing permafrost) may act as global sinks for OM and nutrients in the short run.


Assuntos
Carbono , Sedimentos Geológicos , Ferro , Solo , Solo/química , Ferro/química , Sedimentos Geológicos/química , Nutrientes , Fósforo/química , Concentração de Íons de Hidrogênio
2.
ACS Omega ; 6(49): 34115-34128, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34926959

RESUMO

Biomass char produced from pyrolysis processes is of great interest to be utilized as renewable solid fuels or materials. Forest byproducts and agricultural wastes are low-cost and sustainable biomass feedstocks. These biomasses generally contain high amounts of ash-forming elements, generally leading to high char reactivity. This study elaborates in detail how chemical and physical properties affect CO2 gasification rates of high-ash biomass char, and it also targets the interactions between these properties. Char produced from pine bark, forest residue, and corncobs (particle size 4-30 mm) were included, and all contained different relative compositions of ash-forming elements. Acid leaching was applied to further investigate the influence of inorganic elements in these biomasses. The char properties relevant to the gasification rate were analyzed, that is, elemental composition, specific surface area, and carbon structure. Gasification rates were measured at an isothermal condition of 800 °C with 20% (vol.) of CO2 in N2. The results showed that the inorganic content, particularly K, had a stronger effect on gasification reactivity than specific surface area and aromatic cluster size of the char. At the gasification condition utilized in this study, K could volatilize and mobilize through the char surface, resulting in high gasification reactivity. Meanwhile, the mobilization of Ca did not occur at the low temperature applied, thus resulting in its low catalytic effect. This implies that the dispersion of these inorganic elements through char particles is an important reason behind their catalytic activity. Upon leaching by diluted acetic acid, the K content of these biomasses substantially decreased, while most of the Ca remained in the biomasses. With a low K content in leached biomass char, char reactivity was determined by the active carbon surface area.

3.
Rev Sci Instrum ; 89(6): 065101, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29960572

RESUMO

The design and validation of a newly commissioned entrained flow reactor is described in the present paper. The reactor was designed for advanced studies of fuel conversion and ash formation in powder flames, and the capabilities of the reactor were experimentally validated using two different solid biomass fuels. The drop tube geometry was equipped with a flat flame burner to heat and support the powder flame, optical access ports, a particle image velocimetry (PIV) system for in situ conversion monitoring, and probes for extraction of gases and particulate matter. A detailed description of the system is provided based on simulations and measurements, establishing the detailed temperature distribution and gas flow profiles. Mass balance closures of approximately 98% were achieved by combining gas analysis and particle extraction. Biomass fuel particles were successfully tracked using shadow imaging PIV, and the resulting data were used to determine the size, shape, velocity, and residence time of converting particles. Successful extractive sampling of coarse and fine particles during combustion while retaining their morphology was demonstrated, and it opens up for detailed time resolved studies of rapid ash transformation reactions; in the validation experiments, clear and systematic fractionation trends for K, Cl, S, and Si were observed for the two fuels tested. The combination of in situ access, accurate residence time estimations, and precise particle sampling for subsequent chemical analysis allows for a wide range of future studies, with implications and possibilities discussed in the paper.


Assuntos
Biomassa , Energia Renovável , Desenho de Equipamento , Cinética , Material Particulado/química , Fatores de Tempo
4.
Rev Sci Instrum ; 80(2): 023104, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19256637

RESUMO

The extended use of biomass for heat and power production has caused increased operational problems with fouling and high-temperature corrosion in boilers. These problems are mainly related to the presence of alkali chlorides (KCl and NaCl) at high concentrations in the flue gas. The in situ alkali chloride monitor (IACM) was developed by Vattenfall Research and Development AB for measuring the alkali chloride concentration in hot flue gases (less than or approximately 650 degrees C). The measurement technique is based on molecular differential absorption spectroscopy in the UV range. Simultaneous measurement of SO(2) concentration is also possible. The measuring range is 1-50 ppm for the sum of KCl and NaCl concentrations and 4-750 ppm for SO(2). This paper describes the principle of the IACM as well as its calibration. Furthermore, an example of its application in an industrial boiler is given.


Assuntos
Análise de Injeção de Fluxo/instrumentação , Gases/análise , Microquímica/instrumentação , Cloreto de Potássio/análise , Cloreto de Sódio/análise , Espectrofotometria Ultravioleta/instrumentação , Transdutores , Álcalis/análise , Calibragem , Cloretos/análise , Desenho de Equipamento , Análise de Falha de Equipamento , Análise de Injeção de Fluxo/normas , Calefação/instrumentação , Microquímica/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrofotometria Ultravioleta/normas , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...