Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(15): 19711-19719, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567570

RESUMO

Developing new functionalities of two-dimensional materials (2Dms) can be achieved by their chemical modification with a broad spectrum of molecules. This functionalization is commonly studied by using spectroscopies such as Raman, IR, or XPS, but the detection limit is a common problem. In addition, these methods lack detailed spatial resolution and cannot provide information about the homogeneity of the coating. Atomic force microscopy (AFM), on the other hand, allows the study of 2Dms on the nanoscale with excellent lateral resolution. AFM has been extensively used for topographic analysis; however, it is also a powerful tool for evaluating other properties far beyond topography such as mechanical ones. Therefore, herein, we show how AFM adhesion mapping of transition metal chalcogenide 2Dms (i.e., MnPS3 and MoS2) permits a close inspection of the surface chemical properties. Moreover, the analysis of adhesion as relative values allows a simple and robust strategy to distinguish between bare and functionalized layers and significantly improves the reproducibility between measurements. Remarkably, it is also confirmed by statistical analysis that adhesion values do not depend on the thickness of the layers, proving that they are related only to the most superficial part of the materials. In addition, we have implemented an unsupervised classification method using k-means clustering, an artificial intelligence-based algorithm, to automatically classify samples based on adhesion values. These results demonstrate the potential of simple adhesion AFM measurements to inspect the chemical nature of 2Dms and may have implications for the broad scientific community working in the field.

2.
J Am Chem Soc ; 145(20): 11258-11264, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37158707

RESUMO

We describe the first meltable iron-based zeolitic imidazolate framework (ZIF), denoted MUV-24. This material, elusive from direct synthesis, is obtained from the thermal treatment of [Fe3(im)6(Him)2], which yields Fe(im)2 upon loss of the neutral imidazole molecules. Different crystalline phase transformations are observed upon further heating, until the material melts at 482 °C. Vitrification upon cooling of the liquid phase gives rise to the first Fe-metal-organic framework glass. X-ray total scattering experiments show that the tetrahedral environment of the crystalline solids is maintained in the glass, whereas nanoindentation measurements reveal an increase in Young's modulus, in agreement with stiffening upon vitrification.

3.
Dalton Trans ; 50(44): 16281-16289, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34730586

RESUMO

Transition metal chalcogenophosphates of general formula MPX3 have attracted recent interest in the field of 2D materials due to the possibility of tuning their properties upon reaching the 2D limit. Several works address this challenge by dry mechanical exfoliation. However, only a few of them use a scalable approach. In this work, we apply a general chemical protocol to exfoliate MnPS3. The method employs in the first step chemical intercalation and liquid phase exfoliation and in the second step the addition of molecules used as capping agents on the inorganic layers. Therefore, molecules of different nature prompt the quality of the exfoliated material and its stabilization in an aqueous solution, opening the possibility of using these functionalized layers in several fields. Here we illustrate this possibility in electrochemistry. Thus, we show that when polyethylenimine is used as the capping agent, it is possible to reach a compromise between the stability of high quality MnPS3 flakes in aqueous suspension and their optimum performance as an electrocatalytic system for HER activity.

5.
ACS Appl Mater Interfaces ; 12(41): 46348-46356, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32965099

RESUMO

Energy harvesting through residual heat is considered one of the most promising ways to power wearable devices. In this work, thermoelectric textiles were prepared by coating the fabrics, first with multiple-wall carbon nanotubes (MWCNTs) by using the layer-by-layer technique and second with poly(3,4-ethylenedioxythiophene) (PEDOT) deposited by electrochemical polymerization. Sodium deoxycholate and poly(diallyldimethylammonium chloride) were used as stabilizers to prepare the aqueous dispersions of MWCNTs. The electrochemical deposition of PEDOT on the MWCNT-coated fabric was carried out in a three-electrode electrochemical cell. The polymerization of PEDOT on the fabric increased the electrical conductivity by ten orders of magnitude (through the plane), establishing an excellent path for electric transport across the fabrics. In addition, the fibers showed a Seebeck coefficient of 14.3 µV K-1, which is characteristic of highly doped PEDOT. As a proof of concept, several thermoelectric modules were made with different elements based on the coated acrylic and cotton fabrics. The best generator made of 30 thermoelectric elements using acrylic fabrics exhibited an output power of 0.9 µW with a temperature difference of 31 K.

6.
J Am Chem Soc ; 142(41): 17572-17580, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32938174

RESUMO

Chirality-induced spin selectivity (CISS), whereby helical molecules polarize the spin of electrical current, is an intriguing effect with potential applications in nanospintronics. In this nascent field, the study of the CISS effect using paramagnetic chiral molecules, which could introduce another degree of freedom in controlling the spin transport, remains so far unexplored. To address this challenge, herein we propose the use of self-assembled monolayers (SAMs) of helical lanthanide-binding peptides. To elucidate the effect of the paramagnetic nuclei, monolayers of the peptide coordinating paramagnetic or diamagnetic ions are prepared. By means of spin-dependent electrochemistry, the CISS effect is demonstrated by cyclic voltammetry and electrochemical impedance measurements for both samples. Additionally, an implementation of the standard liquid-metal drop electron transport setup has been carried out, and this process helped to demonstrate the peptides' suitability for solid-state devices. Remarkably, the inclusion of a paramagnetic center in the peptide increases the spin polarization as was independently proved by different techniques. These findings permit the inclusion of magnetic biomolecules in the CISS field and pave the way to their implementation in a new generation of (bio)spintronic nanodevices.


Assuntos
Compostos Organometálicos/química , Peptídeos/química , Sequência de Aminoácidos , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Ouro/química , Elementos da Série dos Lantanídeos/química , Modelos Químicos , Estereoisomerismo , Propriedades de Superfície , Temperatura
7.
Chemistry ; 26(29): 6670-6678, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32045041

RESUMO

The preparation of 2D stacked layers combining flakes of different nature gives rise to countless numbers of heterostructures where new band alignments, defined at the interfaces, control the electronic properties of the system. Among the large family of 2D/2D heterostructures, the one formed by the combination of the most common semiconducting transition metal dichalcogenides, WS2 /MoS2 , has awakened great interest owing to its photovoltaic and photoelectrochemical properties. Solution as well as dry physical methods have been developed to optimize the synthesis of these heterostructures. Here, a suspension of negatively charged MoS2 flakes is mixed with a methanolic solution of a cationic W3 S4 -core cluster, giving rise to a homogeneous distribution of the clusters over the layers. In a second step, a calcination of this molecular/2D heterostructure under N2 leads to the formation of clean WS2 /MoS2 heterostructures, where the photoluminescence of both counterparts is quenched, proving an efficient interlayer coupling. Thus, this chemical method combines the advantages of a solution approach (simple, scalable, and low-cost) with the good quality interfaces reached by using more complicated traditional physical methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...