Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 119(3): 743-758, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35880724

RESUMO

AIMS: Declining cellular functional capacity resulting from stress or ageing is a primary contributor to impairment of myocardial performance. Molecular pathway regulation of biological processes in cardiac interstitial cells (CICs) is pivotal in stress and ageing responses. Altered localization of the RNA-binding protein Lin28A has been reported in response to environmental stress, but the role of Lin28A in response to stress in CICs has not been explored. Surface Lin28A redistribution is indicative of stress response in CIC associated with ageing and senescence. METHODS AND RESULTS: Localization of Lin28A was assessed by multiple experimental analyses and treatment conditions and correlated to oxidative stress, senescence, and ploidy in adult murine CICs. Surface Lin28A expression is present on 5% of fresh CICs and maintained through Passage 2, increasing to 21% in hyperoxic conditions but lowered to 14% in physiologic normoxia. Surface Lin28A is coincident with elevated senescence marker p16 and beta-galactosidase (ß-gal) expression in CICs expanded in hyperoxia, and also increases with polyploidization and binucleation of CICs regardless of oxygen culture. Transcriptional profiling of CICs using single-cell RNA-Seq reveals up-regulation of pathways associated with oxidative stress in CICs exhibiting surface Lin28A. Induction of surface Lin28A by oxidative stress is blunted by treatment of cells with the antioxidant Trolox in a dose-dependent manner, with 300 µM Trolox exposure maintaining characteristics of freshly isolated CICs possessing low expression of surface Lin28A and ß-gal with predominantly diploid content. CONCLUSION: Surface Lin28A is a marker of environmental oxidative stress in CICs and antioxidant treatment antagonizes this phenotype. The biological significance of Lin28 surface expression and consequences for myocardial responses may provide important insights regarding mitigation of cardiac stress and ageing.


Assuntos
Antioxidantes , Senescência Celular , Animais , Camundongos , Antioxidantes/farmacologia , Envelhecimento/genética , Envelhecimento/metabolismo , Estresse Oxidativo , Miocárdio/metabolismo
2.
Cardiovasc Res ; 117(1): 201-211, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32176281

RESUMO

AIMS: Telomere attrition in cardiomyocytes is associated with decreased contractility, cellular senescence, and up-regulation of proapoptotic transcription factors. Pim1 is a cardioprotective kinase that antagonizes the aging phenotype of cardiomyocytes and delays cellular senescence by maintaining telomere length, but the mechanism remains unknown. Another pathway responsible for regulating telomere length is the transforming growth factor beta (TGFß) signalling pathway where inhibiting TGFß signalling maintains telomere length. The relationship between Pim1 and TGFß has not been explored. This study delineates the mechanism of telomere length regulation by the interplay between Pim1 and components of TGFß signalling pathways in proliferating A549 cells and post-mitotic cardiomyocytes. METHODS AND RESULTS: Telomere length was maintained by lentiviral-mediated overexpression of PIM1 and inhibition of TGFß signalling in A549 cells. Telomere length maintenance was further demonstrated in isolated cardiomyocytes from mice with cardiac-specific overexpression of PIM1 and by pharmacological inhibition of TGFß signalling. Mechanistically, Pim1 inhibited phosphorylation of Smad2, preventing its translocation into the nucleus and repressing expression of TGFß pathway genes. CONCLUSION: Pim1 maintains telomere lengths in cardiomyocytes by inhibiting phosphorylation of the TGFß pathway downstream effectors Smad2 and Smad3, which prevents repression of telomerase reverse transcriptase. Findings from this study demonstrate a novel mechanism of telomere length maintenance and provide a potential target for preserving cardiac function.


Assuntos
Senescência Celular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Homeostase do Telômero/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Células A549 , Animais , Humanos , Masculino , Camundongos Knockout , Miócitos Cardíacos/enzimologia , Fosforilação , Proteínas Proto-Oncogênicas c-pim-1/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Telomerase/metabolismo
3.
J Am Heart Assoc ; 9(1): e013452, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31902324

RESUMO

Background CardioChimeras produced by fusion of murine c-kit+ cardiac interstitial cells with mesenchymal stem cells promote superior structural and functional recovery in a mouse model of myocardial infarction compared with either precursor cell alone or in combination. Creation of human CardioChimeras (hCCs) represents the next step in translational development of this novel cell type, but new challenges arise when working with c-kit+ cardiac interstitial cells isolated and expanded from human heart tissue samples. The objective of the study was to establish a reliable cell fusion protocol for consistent optimized creation of hCCs and characterize fundamental hCC properties. Methods and Results Cell fusion was induced by incubating human c-kit+ cardiac interstitial cells and mesenchymal stem cells at a 2:1 ratio with inactivated Sendai virus. Hybrid cells were sorted into 96-well microplates for clonal expansion to derive unique cloned hCCs, which were then characterized for various cellular and molecular properties. hCCs exhibited enhanced survival relative to the parent cells and promoted cardiomyocyte survival in response to serum deprivation in vitro. Conclusions The generation of hCC is demonstrated and validated in this study, representing the next step toward implementation of a novel cell product for therapeutic development. Feasibility of creating human hybrid cells prompts consideration of multiple possibilities to create novel chimeric cells derived from cells with desirable traits to promote healing in pathologically damaged myocardium.


Assuntos
Fusão Celular , Células Híbridas/fisiologia , Células-Tronco Mesenquimais/fisiologia , Miocárdio/citologia , Animais , Biomarcadores/metabolismo , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Diploide , Humanos , Miócitos Cardíacos/fisiologia , Fenótipo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Ratos , Fatores de Tempo
4.
J Muscle Res Cell Motil ; 41(4): 363-373, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31863324

RESUMO

Researchers continue to develop therapeutic products for the repair and replacement of myocardial tissue that demonstrates contractility equivalent to normal physiologic states. As clinical trials focused on pure adult stem cell populations undergo meta-analysis for preclinical through clinical design, the field of tissue engineering is emerging as a new clinical frontier to repair the myocardium and improve cardiac output. This review will first discuss the three primary tissue engineering product themes that are advancing in preclinical to clinical models: (1) cell-free scaffolds, (2) scaffold-free cellular, and (3) hybrid cell and scaffold products. The review will then focus on the products that have advanced from preclinical models to clinical trials. In advancing the cardiac regenerative medicine field, long-term gains towards discovering an optimal product to generate functional myocardial tissue and eliminate heart failure may be achieved.


Assuntos
Contratura/fisiopatologia , Miocárdio/metabolismo , Engenharia Tecidual/métodos , Animais , Humanos , Ratos , Ratos Sprague-Dawley
5.
Stem Cell Res Ther ; 10(1): 373, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801634

RESUMO

BACKGROUND: Delivery of stem cells to the failing heart is a promising therapeutic strategy. However, the improvement in cardiac function in animal studies has not fully translated to humans. To help bridge the gap between species, we investigated the effects of adult human cardiac stem cells (hCSCs) on contractile function of human engineered cardiac tissues (hECTs) as a species-specific model of the human myocardium. METHODS: Human induced pluripotent stem cell-derived cardiomyoctes (hCMs) were mixed with Collagen/Matrigel to fabricate control hECTs, with an experimental group of hCSC-supplemented hECT fabricated using a 9:1 ratio of hCM to hCSC. Functional testing was performed starting on culture day 6, under spontaneous conditions and also during electrical pacing from 0.25 to 1.0 Hz, measurements repeated at days 8 and 10. hECTs were then frozen and processed for gene analysis using a Nanostring assay with a cardiac targeted custom panel. RESULTS: The hCSC-supplemented hECTs displayed a twofold higher developed force vs. hCM-only controls by day 6, with approximately threefold higher developed stress and maximum rates of contraction and relaxation during pacing at 0.75 Hz. The spontaneous beat rate characteristics were similar between groups, and hCSC supplementation did not adversely impact beat rate variability. The increased contractility persisted through days 8 and 10, albeit with some decrease in the magnitude of the difference of the force by day 10, but with developed stress still significantly higher in hCSC-supplemented hECT; these findings were confirmed with multiple hCSC and hCM cell lines. The force-frequency relationship, while negative for both, control (- 0.687 Hz- 1; p = 0.013 vs. zero) and hCSC-supplemented (- 0.233 Hz- 1;p = 0.067 vs. zero) hECTs, showed a significant rectification in the regression slope in hCSC-supplemented hECT (p = 0.011 vs. control). Targeted gene exploration (59 genes) identified a total of 14 differentially expressed genes, with increases in the ratios of MYH7/MHY6, MYL2/MYL7, and TNNI3/TNNI1 in hCSC-supplemented hECT versus controls. CONCLUSIONS: For the first time, hCSC supplementation was shown to significantly improve human cardiac tissue contractility in vitro, without evidence of proarrhythmic effects, and was associated with increased expression of markers of cardiac maturation. These findings provide new insights about adult cardiac stem cells as contributors to functional improvement of human myocardium.


Assuntos
Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Diferenciação Celular , Colágeno/química , Combinação de Medicamentos , Estimulação Elétrica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Laminina/química , Miocárdio/citologia , Miócitos Cardíacos/citologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Proteoglicanas/química , Transcriptoma , Troponina I/genética , Troponina I/metabolismo
6.
Expert Rev Cardiovasc Ther ; 17(8): 597-604, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31382789

RESUMO

Introduction: Changes in our daily living, particularly in work routines, diet, and physical exercise, have influenced a worldwide crisis for life-threatening comorbidities and the likelihood of cardiovascular disease diagnosis. Cardiovascular regenerative medicine researchers continue to investigate new therapeutic approaches and reexamine completed clinical trials to design more effective future studies. As the frequency of cardiovascular disease diagnosis continues to rise, investigations of how to repair and regenerate the failing myocardium remains an essential mission for human health. Areas covered: This review first examines the aging process, the rising rate of comorbidities, and the likelihood of developing heart disease. In the ongoing efforts to recapitulate human health needs in clinical trials, a review of clinical trials involving cellular therapeutics for cardiac repair, with a focus on the patient population and patients' complex medical records, is presented. Expert opinion: The expert opinion first draws attention to the changing demographics of patients diagnosed with diseases that lead to heart failure and focusing on obesity as a primary driver for increased cardiovascular disease. The opinion focuses on the importance of designing preclinical models and experimentation that better mimic the patient population and clinical situations to evaluate the effectiveness of potential future therapeutic interventions.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Insuficiência Cardíaca/epidemiologia , Comorbidade , Insuficiência Cardíaca/terapia , Humanos , Obesidade
7.
Trends Endocrinol Metab ; 30(8): 557-567, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31262545

RESUMO

Ability to promote completion of mitotic cycling of adult mammalian cardiomyocytes remains an intractable and vexing challenge, despite being one of the most sought after 'holy grails' of cardiovascular research. While some of the struggle is attributable to adult cardiomyocytes themselves that are notoriously post-mitotic, another contributory factor rests with difficulty in definitive tracking of adult cardiomyocyte cell cycle and lack of rigorous measures to track proliferation in situ. This review summarizes past, present, and future directions to promote adult mammalian cardiomyocyte cell cycle progression, proliferation, and renewal. Establishing relationship(s) between cardiomyocyte cell cycle progression and cellular biological properties is sorely needed to understand the mechanistic basis for cardiomyocyte cell cycle withdrawal to enhance cardiomyocyte cell cycle progression and mitosis.


Assuntos
Ciclo Celular/fisiologia , Proliferação de Células/fisiologia , Miócitos Cardíacos/citologia , Animais , Ciclo Celular/genética , Proliferação de Células/genética , Senescência Celular/genética , Senescência Celular/fisiologia , Humanos , Miócitos Cardíacos/metabolismo
8.
Commun Biol ; 2: 205, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231694

RESUMO

Cardiomyocyte ploidy has been described but remains obscure in cardiac interstitial cells. Ploidy of c-kit+ cardiac interstitial cells was assessed using confocal, karyotypic, and flow cytometric technique. Notable differences were found between rodent (rat, mouse) c-kit+ cardiac interstitial cells possessing mononuclear tetraploid (4n) content, compared to large mammals (human, swine) with mononuclear diploid (2n) content. In-situ analysis, confirmed with fresh isolates, revealed diploid content in human c-kit+ cardiac interstitial cells and a mixture of diploid and tetraploid content in mouse. Downregulation of the p53 signaling pathway provides evidence why rodent, but not human, c-kit+ cardiac interstitial cells escape replicative senescence. Single cell transcriptional profiling reveals distinctions between diploid versus tetraploid populations in mouse c-kit+ cardiac interstitial cells, alluding to functional divergences. Collectively, these data reveal notable species-specific biological differences in c-kit+ cardiac interstitial cells, which could account for challenges in extrapolation of myocardial from preclinical studies to clinical trials.


Assuntos
Senescência Celular , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Tetraploidia , Animais , Proliferação de Células , Regulação para Baixo , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Cariotipagem , Leucócitos Mononucleares/citologia , Masculino , Camundongos , Microscopia Confocal , Ploidias , Ratos , Suínos
9.
Gene Ther ; 26(7-8): 324-337, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31239537

RESUMO

Advancement of stem cell-based treatment will involve next-generation approaches to enhance therapeutic efficacy which is often modest, particularly in the context of myocardial regenerative therapy. Our group has previously demonstrated the beneficial effect of genetic modification of cardiac stem cells with Pim-1 kinase overexpression to rejuvenate aged cells as well as potentiate myocardial repair. Despite these encouraging findings, concerns were raised regarding potential for oncogenic risk associated with Pim-1 kinase overexpression. Testing of Pim-1 engineered c-kit+ cardiac interstitial cells (cCIC) derived from heart failure patient samples for indices of oncogenic risk was undertaken using multiple assessments including soft agar colony formation, micronucleation, gamma-Histone 2AX foci, and transcriptome profiling. Collectively, findings demonstrate comparable phenotypic and biological properties of cCIC following Pim-1 overexpression compared with using baseline control cells with no evidence for oncogenic phenotype. Using a highly selective and continuous sensor for quantitative assessment of PIM1 kinase activity revealed a sevenfold increase in Pim-1 engineered vs. control cells. Kinase activity profiling using a panel of sensors for other kinases demonstrates elevation of IKKs), AKT/SGK, CDK1-3, p38, and ERK1/2 in addition to Pim-1 consistent with heightened kinase activity correlating with Pim-1 overexpression that may contribute to Pim-1-mediated effects. Enhancement of cellular survival, proliferation, and other beneficial properties to augment stem cell-mediated repair without oncogenic risk is a feasible, logical, and safe approach to improve efficacy and overcome current limitations inherent to cellular adoptive transfer therapeutic interventions.


Assuntos
Carcinogênese/genética , Terapia Genética/efeitos adversos , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Células-Tronco/metabolismo , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Testes para Micronúcleos , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Células-Tronco/patologia
10.
J Mol Cell Cardiol ; 127: 154-164, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30571978

RESUMO

RATIONALE: Understanding and manipulating the cardiomyocyte cell cycle has been the focus of decades of research, however the ultimate goal of activating mitotic activity in adult mammalian cardiomyocytes remains elusive and controversial. The relentless pursuit of controlling cardiomyocyte mitosis has been complicated and obfuscated by a multitude of indices used as evidence of cardiomyocyte cell cycle activity that lack clear identification of cardiomyocyte "proliferation" versus cell cycle progression, endoreplication, endomitosis, and even DNA damage. Unambiguous appreciation of the complexity of cardiomyocyte replication that avoids oversimplification and misinterpretation is desperately needed. OBJECTIVE: Track cardiomyocyte cell cycle activity and authenticate fidelity of proliferation markers as indicators of de novo cardiomyogenesis in post-mitotic cardiomyocytes. METHODS AND RESULTS: Cardiomyocytes expressing the FUCCI construct driven by the α-myosin heavy chain promoter were readily and uniformly detected through the myocardium of transgenic mice. Cardiomyocyte cell cycle activity peaks at postnatal day 2 and rapidly declines thereafter with almost all cardiomyocytes arrested at the G1/S cell cycle transition. Myocardial infarction injury in adult hearts prompts transient small increases in myocytes progressing through cell cycle without concurrent mitotic activity, indicating lack of cardiomyogenesis. In comparison, cardiomyogenic activity during early postnatal development correlated with coincidence of FUCCI and cKit+ cells that were undetectable in the adult myocardium. CONCLUSIONS: Cardiomyocyte-specific expression of Fluorescence Ubiquitination-based Cell Cycle Indicators (FUCCI) reveals previously unappreciated aspects of cardiomyocyte cell cycle arrest and biological activity in postnatal development and in response to pathologic damage. Compared to many other methods and model systems, the FUCCI transgenic (FUCCI-Tg) mouse represents a valuable tool to unambiguously track cell cycle and proliferation of the entire cardiomyocyte population in the adult murine heart. FUCCI-Tg provides a desperately needed novel approach in the armamentarium of tools to validate cardiomyocyte proliferative activity that will reveal cell cycle progression, discriminate between cycle progression, DNA replication, and proliferation, and provide important insight for enhancing cardiomyocyte proliferation in the context of adult myocardial tissue.


Assuntos
Ciclo Celular , Técnicas de Transferência de Genes , Coração/fisiologia , Miócitos Cardíacos/citologia , Ubiquitinação , Animais , Animais Recém-Nascidos , Pontos de Checagem do Ciclo Celular , Divisão Celular , Proliferação de Células , Células Cultivadas , Fluorescência , Camundongos Transgênicos , Especificidade de Órgãos
11.
Sci Rep ; 8(1): 12060, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104715

RESUMO

Regenerative therapeutic approaches for myocardial diseases often involve delivery of stem cells expanded ex vivo. Prior studies indicate that cell culture conditions affect functional and phenotypic characteristics, but relationship(s) of cultured cells derived from freshly isolated populations and the heterogeneity of the cultured population remain poorly defined. Functional and phenotypic characteristics of ex vivo expanded cells will determine outcomes of interventional treatment for disease, necessitating characterization of the impact that ex vivo expansion has upon isolated stem cell populations. Single-cell RNA-Seq profiling (scRNA-Seq) was performed to determine consequences of culture expansion upon adult cardiac progenitor cells (CPCs) as well as relationships with other cell populations. Bioinformatic analyses demonstrate that identity marker genes expressed in freshly isolated cells become undetectable in cultured CPCs while low level expression emerges for thousands of other genes. Transcriptional profile of CPCs exhibited greater degree of similarity throughout the cultured population relative to freshly isolated cells. Findings were validated by comparative analyses using scRNA-Seq datasets of various cell types generated by multiple scRNA-Seq technology. Increased transcriptome diversity and decreased population heterogeneity in the cultured cell population may help account for reported outcomes associated with experimental and clinical use of CPCs for treatment of myocardial injury.


Assuntos
Células-Tronco Adultas/fisiologia , Células Cultivadas/fisiologia , Miócitos Cardíacos/fisiologia , Transplante de Células-Tronco/métodos , Adulto , Células-Tronco Adultas/transplante , Animais , Diferenciação Celular/genética , Células Cultivadas/transplante , Biologia Computacional , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica/métodos , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/terapia , Humanos , Camundongos , Miocárdio/citologia , Miocárdio/patologia , Miócitos Cardíacos/transplante , Cultura Primária de Células/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma/genética , Resultado do Tratamento
12.
Circ Res ; 123(2): 177-187, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29976686

RESUMO

The idiom heart of the matter refers to the focal point within a topic and, with regard to health and longevity, the heart is truly pivotal for quality of life. Societal trends worldwide continue toward increased percent body fat and decreased physical activity with coincident increases in chronic diseases including cardiovascular disease as the top global cause of death along with insulin resistance, accelerated aging, cancer. Although long-term survival rates for cardiovascular disease patients are grim, intense research efforts continue to improve both prevention and treatment options. Pharmacological interventions remain the predominant interventional strategy for mitigating progression and managing symptoms, but cellular therapies have the potential to cure or even mediate remission of cardiovascular disease. Adult stem cells are the most studied cellular therapy in both preclinical and clinical investigation. This review will focus on the advanced therapeutic strategies to augment products and methods of delivery, which many think heralds the future of clinical investigations. Advanced preclinical strategies using adult stem cells are examined to promote synergism between preclinical and clinical research, streamline implementation, and improve this imminent matter of the heart.


Assuntos
Células-Tronco Adultas/citologia , Cardiopatias/terapia , Medicina Regenerativa/métodos , Transplante de Células-Tronco/métodos , Células-Tronco Adultas/transplante , Animais , Humanos , Miócitos Cardíacos/citologia
13.
Nat Rev Cardiol ; 15(9): 523-542, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30054574

RESUMO

Cardiac ageing manifests as a decline in function leading to heart failure. At the cellular level, ageing entails decreased replicative capacity and dysregulation of cellular processes in myocardial and nonmyocyte cells. Various extrinsic parameters, such as lifestyle and environment, integrate important signalling pathways, such as those involving inflammation and oxidative stress, with intrinsic molecular mechanisms underlying resistance versus progression to cellular senescence. Mitigation of cardiac functional decline in an ageing organism requires the activation of enhanced maintenance and reparative capacity, thereby overcoming inherent endogenous limitations to retaining a youthful phenotype. Deciphering the molecular mechanisms underlying dysregulation of cellular function and renewal reveals potential interventional targets to attenuate degenerative processes at the cellular and systemic levels to improve quality of life for our ageing population. In this Review, we discuss the roles of extrinsic and intrinsic factors in cardiac ageing. Animal models of cardiac ageing are summarized, followed by an overview of the current and possible future treatments to mitigate the deleterious effects of cardiac ageing.


Assuntos
Envelhecimento , Autorrenovação Celular/fisiologia , Senescência Celular/fisiologia , Coração , Miocárdio , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Coração/fisiologia , Coração/fisiopatologia , Humanos , Miocárdio/citologia , Miocárdio/metabolismo
14.
Circ Res ; 123(1): 57-72, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29636378

RESUMO

RATIONALE: Biological significance of c-Kit as a cardiac stem cell marker and role(s) of c-Kit+ cells in myocardial development or response to pathological injury remain unresolved because of varied and discrepant findings. Alternative experimental models are required to contextualize and reconcile discordant published observations of cardiac c-Kit myocardial biology and provide meaningful insights regarding clinical relevance of c-Kit signaling for translational cell therapy. OBJECTIVE: The main objectives of this study are as follows: demonstrating c-Kit myocardial biology through combined studies of both human and murine cardiac cells; advancing understanding of c-Kit myocardial biology through creation and characterization of a novel, inducible transgenic c-Kit reporter mouse model that overcomes limitations inherent to knock-in reporter models; and providing perspective to reconcile disparate viewpoints on c-Kit biology in the myocardium. METHODS AND RESULTS: In vitro studies confirm a critical role for c-Kit signaling in both cardiomyocytes and cardiac stem cells. Activation of c-Kit receptor promotes cell survival and proliferation in stem cells and cardiomyocytes of either human or murine origin. For creation of the mouse model, the cloned mouse c-Kit promoter drives Histone2B-EGFP (enhanced green fluorescent protein; H2BEGFP) expression in a doxycycline-inducible transgenic reporter line. The combination of c-Kit transgenesis coupled to H2BEGFP readout provides sensitive, specific, inducible, and persistent tracking of c-Kit promoter activation. Tagging efficiency for EGFP+/c-Kit+ cells is similar between our transgenic versus a c-Kit knock-in mouse line, but frequency of c-Kit+ cells in cardiac tissue from the knock-in model is 55% lower than that from our transgenic line. The c-Kit transgenic reporter model reveals intimate association of c-Kit expression with adult myocardial biology. Both cardiac stem cells and a subpopulation of cardiomyocytes express c-Kit in uninjured adult heart, upregulating c-Kit expression in response to pathological stress. CONCLUSIONS: c-Kit myocardial biology is more complex and varied than previously appreciated or documented, demonstrating validity in multiple points of coexisting yet heretofore seemingly irreconcilable published findings.


Assuntos
Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas Proto-Oncogênicas c-kit/fisiologia , Células-Tronco/fisiologia , Animais , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Receptores ErbB/metabolismo , Técnicas de Transferência de Genes , Humanos , Camundongos , Camundongos Transgênicos , Modelos Animais , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Estresse Fisiológico
15.
Circ Res ; 122(8): 1151-1163, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29650632

RESUMO

Cardiovascular regenerative therapies are pursued on both basic and translational levels. Although efficacy and value of cell therapy for myocardial regeneration can be debated, there is a consensus that profound deficits in mechanistic understanding limit advances, optimization, and implementation. In collaboration with the TACTICS (Transnational Alliance for Regenerative Therapies in Cardiovascular Syndromes), this review overviews several pivotal aspects of biological processes impinging on cardiac maintenance, repair, and regeneration. The goal of summarizing current mechanistic understanding is to prompt innovative directions for fundamental studies delineating cellular reparative and regenerative processes. Empowering myocardial regenerative interventions, whether dependent on endogenous processes or exogenously delivered repair agents, ultimately depends on mastering mechanisms and novel strategies that take advantage of rather than being limited by inherent myocardial biology.


Assuntos
Cardiomiopatias/fisiopatologia , Coração/fisiologia , Regeneração , Envelhecimento/fisiologia , Animais , Apoptose , Autofagia , Cardiomiopatias/terapia , Comunicação Celular , Ciclo Celular , Ativação do Complemento , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Regulação da Expressão Gênica/fisiologia , Humanos , Inflamação , Mamíferos/fisiologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Neovascularização Fisiológica , Neutrófilos/imunologia , Comunicação Parácrina/fisiologia , Medicina Regenerativa/tendências
17.
Circ Res ; 121(2): 113-124, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28446444

RESUMO

RATIONALE: The relative actions and synergism between distinct myocardial-derived stem cell populations remain obscure. Ongoing debates on optimal cell population(s) for treatment of heart failure prompted implementation of a protocol for isolation of multiple stem cell populations from a single myocardial tissue sample to develop new insights for achieving myocardial regeneration. OBJECTIVE: Establish a robust cardiac stem cell isolation and culture protocol to consistently generate 3 distinct stem cell populations from a single human heart biopsy. METHODS AND RESULTS: Isolation of 3 endogenous cardiac stem cell populations was performed from human heart samples routinely discarded during implantation of a left ventricular assist device. Tissue explants were mechanically minced into 1 mm3 pieces to minimize time exposure to collagenase digestion and preserve cell viability. Centrifugation removes large cardiomyocytes and tissue debris producing a single cell suspension that is sorted using magnetic-activated cell sorting technology. Initial sorting is based on tyrosine-protein kinase Kit (c-Kit) expression that enriches for 2 c-Kit+ cell populations yielding a mixture of cardiac progenitor cells and endothelial progenitor cells. Flowthrough c-Kit- mesenchymal stem cells are positively selected by surface expression of markers CD90 and CD105. After 1 week of culture, the c-Kit+ population is further enriched by selection for a CD133+ endothelial progenitor cell population. Persistence of respective cell surface markers in vitro is confirmed both by flow cytometry and immunocytochemistry. CONCLUSIONS: Three distinct cardiac cell populations with individualized phenotypic properties consistent with cardiac progenitor cells, endothelial progenitor cells, and mesenchymal stem cells can be successfully concurrently isolated and expanded from a single tissue sample derived from human heart failure patients.


Assuntos
Células Endoteliais , Citometria de Fluxo/métodos , Células-Tronco Mesenquimais , Miocárdio/citologia , Miócitos Cardíacos , Biópsia , Separação Celular/métodos , Células Cultivadas , Células Endoteliais/fisiologia , Coração/fisiologia , Humanos , Células-Tronco Mesenquimais/fisiologia , Miócitos Cardíacos/fisiologia , Células-Tronco/fisiologia
18.
PLoS One ; 12(3): e0173963, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28323876

RESUMO

PIM1, a pro-survival gene encoding a serine/ threonine kinase, influences cell proliferation and survival. Modification of cardiac progenitor cells (CPCs) or cardiomyocytes with PIM1 using a lentivirus-based delivery method showed long-term improved cardiac function after myocardial infarction (MI). However, lentivirus based delivery methods have stringent FDA regulation with respect to clinical trials. To provide an alternative and low risk PIM1 delivery method, this study examined the use of a non-viral modified plasmid-minicircle (MC) as a vehicle to deliver PIM1 into mouse CPCs (mCPCs) in vitro and the myocardium in vivo. MC containing a turbo gfp reporter gene (gfp-MC) was used as a transfection and injection control. PIM1 was subcloned into gfp-MC (PIM1-MC) and then transfected into mCPCs at an efficiency of 29.4±3.7%. PIM1-MC engineered mCPCs (PIM1-mCPCs) exhibit significantly (P<0.05) better survival rate under oxidative treatment. PIM1-mCPCs also exhibit 1.9±0.1 and 2.2±0.2 fold higher cell proliferation at 3 and 5 days post plating, respectively, as compared to gfp-MC transfected mCPCs control. PIM1-MC was injected directly into ten-week old adult FVB female mice hearts in the border zone immediately after MI. Delivery of PIM1 into myocardium was confirmed by GFP+ cardiomyocytes. Mice with PIM1-MC injection showed increased protection compared to gfp-MC injection groups measured by ejection fraction at 3 and 7 days post injury (P = 0.0379 and P = 0.0262 by t-test, respectively). Success of PIM1 delivery and integration into mCPCs in vitro and cardiomyocytes in vivo by MC highlights the possibility of a non-cell based therapeutic approach for treatment of ischemic heart disease and MI.


Assuntos
Terapia Genética/métodos , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Proteínas Proto-Oncogênicas c-pim-1/genética , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Camundongos , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Plasmídeos/genética , Transfecção
19.
Circ J ; 81(2): 142-148, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28025465

RESUMO

Cardiovascular disease remains the leading cause of death worldwide and developing novel therapies to treat and cure the disease remains a high priority in the healthcare research community. Adult stem cells were successful in entering numerous clinical trials over the past 15 years in attempts to regenerate the heart. First-generation adult stem cell therapies for myocardial regeneration were highly promising in small animal models but realized benefits in humans were far more modest. Consequently, second-generation therapeutic approaches in early implementation phases have focused on enhancing cellular properties with higher survival and regenerative potential. Genetic programming dictates cellular fate, so understanding genetic composition and responses at the gene level to influence the outcome of the cell is essential for successful outcomes in regenerative medicine. Genetic editing is at the forefront of scientific innovation and as basic scientific research continues to expand upon understanding eukaryotic regenerative themes, a clearer vision of the possible future therapeutic approaches can be realized. Ultimately, enhancing biology and manipulating evolutional selection of cellular properties will be critical to achieving clinically relevant and biologically meaningful cardiac regeneration.


Assuntos
Engenharia Genética/métodos , Coração/fisiologia , Medicina Regenerativa/métodos , Evolução Molecular Direcionada/métodos , Humanos , Miocárdio/citologia , Regeneração/fisiologia
20.
J Mol Cell Cardiol ; 100: 54-63, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27721024

RESUMO

BACKGROUND: Myocardial infarction is followed by cardiac dysfunction, cellular death, and ventricular remodeling, including tissue fibrosis. S100A4 protein plays multiple roles in cellular survival, and tissue fibrosis, but the relative role of the S100A4 in the myocardium after myocardial infarction is unknown. This study aims to investigate the role of S100A4 in myocardial remodeling and cardiac function following infarct damage. METHODS AND RESULTS: S100A4 expression is low in the adult myocardium, but significantly increased following myocardial infarction. Deletion of S100A4 increased cardiac damage after myocardial infarction, whereas cardiac myocyte-specific overexpression of S100A4 protected the infarcted myocardium. Decreased cardiac function in S100A4 Knockout mice was accompanied with increased cardiac remodeling, fibrosis, and diminished capillary density in the remote myocardium. Loss of S100A4 caused increased apoptotic cell death both in vitro and in vivo in part mediated by decreased VEGF expression. Conversely, S100A4 overexpression protected cells against apoptosis in vitro and in vivo. Increased pro-survival AKT-signaling explained reduced apoptosis in S100A4 overexpressing cells. CONCLUSION: S100A4 expression protects cardiac myocytes against myocardial ischemia and is required for stabilization of cardiac function after MI.


Assuntos
Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/genética , Estresse Fisiológico/genética , Animais , Morte Celular/genética , Modelos Animais de Doenças , Ecocardiografia , Expressão Gênica , Hemodinâmica , Camundongos , Camundongos Knockout , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/fisiopatologia , Miocárdio/patologia , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...