Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone ; 36(4): 627-34, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15781003

RESUMO

Seathre-Chotzen syndrome (SCS) is an autosomal dominant craniosynostosis syndrome, associated with loss-of-function mutations in the basic helix-loop-helix transcription factor, TWIST1. The biologic activity of TWIST1 has been implicated in the inhibition of differentiation of multiple cell lineages. Therefore, premature fusion of cranial sutures (craniosynostosis) in SCS may be mediated by altered differentiation of calvarial osteoblasts. In this study, we evaluated osteoblasts derived from calvarial bone of three patients with SCS and three unaffected individuals as controls to investigate the principle stages of osteoblast differentiation: (1) proliferation, (2) matrix maturation, and (3) mineralization. Using a BrdU-Hoechst flow cytometry assay, we found that the percent of proliferating cells was significantly reduced in cells derived from patients with SCS compared with those derived from controls (P < or = 0.05). In the matrix maturation stage, alkaline phosphatase (ALP) enzyme activity and the expression of extracellular matrix genes, collagen I alpha 2 (COL1A2), osteopontin (OPN), osteocalcin (OC), and the runt-related transcription factor RUNX2 were examined by enzymatic assay and real-time quantitative RT-PCR, respectively. We identified no significant differences in the expression of matrix related transcripts. However, we found significant reductions in ALP activity on days 3 and 7 and in RUNX2 expression on days 14 and 21 (P < or = 0.05). Quantitative alizarin red S mineralization assays showed a trend toward increased mineralization in osteoblasts derived from patients with SCS at days 21 and 28, although not statistically significant. Our results demonstrated that loss-of-function mutations of TWIST1 led to reduced proliferation regardless of the functional domain affected. We did not find any conclusive differences in matrix maturation or mineralization in these primary osteoblasts. It is plausible that mutations in different functional domains of TWIST1 have divergent effects on these later stages of differentiation.


Assuntos
Acrocefalossindactilia/patologia , Osteoblastos/patologia , Fosfatase Alcalina/metabolismo , Diferenciação Celular , Linhagem Celular , Criança , Humanos , Lactente , Osteoblastos/enzimologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...