Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 291(12): 6292-303, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26774272

RESUMO

Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a Ácido Graxo/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Sequência Conservada , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/química , Expressão Gênica , Ligação de Hidrogênio , Modelos Moleculares , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
2.
Biochemistry ; 54(24): 3860-70, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26020841

RESUMO

Acetyl-CoA carboxylase catalyzes the first and regulated step in fatty acid synthesis. In most Gram-negative and Gram-positive bacteria, the enzyme is composed of three proteins: biotin carboxylase, a biotin carboxyl carrier protein (BCCP), and carboxyltransferase. The reaction mechanism involves two half-reactions with biotin carboxylase catalyzing the ATP-dependent carboxylation of biotin-BCCP in the first reaction. In the second reaction, carboxyltransferase catalyzes the transfer of the carboxyl group from biotin-BCCP to acetyl-CoA to form malonyl-CoA. In this report, high-resolution crystal structures of biotin carboxylase from Haemophilus influenzae were determined with bicarbonate, the ATP analogue AMPPCP; the carboxyphosphate intermediate analogues, phosphonoacetamide and phosphonoformate; the products ADP and phosphate; and the carboxybiotin analogue N1'-methoxycarbonyl biotin methyl ester. The structures have a common theme in that bicarbonate, phosphate, and the methyl ester of the carboxyl group of N1'-methoxycarbonyl biotin methyl ester all bound in the same pocket in the active site of biotin carboxylase and as such utilize the same set of amino acids for binding. This finding suggests a catalytic mechanism for biotin carboxylase in which the binding pocket that binds tetrahedral phosphate also accommodates and stabilizes a tetrahedral dianionic transition state resulting from direct transfer of CO2 from the carboxyphosphate intermediate to biotin.


Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Biotina/química , Carbono-Nitrogênio Ligases/química , Haemophilus influenzae/enzimologia , Modelos Moleculares , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Bicarbonatos/química , Bicarbonatos/metabolismo , Biocatálise , Biotina/análogos & derivados , Biotina/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Bases de Dados de Proteínas , Foscarnet/química , Foscarnet/metabolismo , Conformação Molecular , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
3.
Mol Microbiol ; 96(1): 28-41, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25534847

RESUMO

PlsX is an acyl-acyl carrier protein (ACP):phosphate transacylase that interconverts the two acyl donors in Gram-positive bacterial phospholipid synthesis. The deletion of plsX in Staphylococcus aureus results in a requirement for both exogenous fatty acids and de novo type II fatty acid biosynthesis. Deletion of plsX (SP0037) in Streptococcus pneumoniae did not result in an auxotrophic phenotype. The ΔplsX S. pneumoniae strain was refractory to myristic acid-dependent growth arrest, and unlike the wild-type strain, was susceptible to fatty acid synthesis inhibitors in the presence of exogenous oleate. The ΔplsX strain contained longer chain saturated fatty acids imparting a distinctly altered phospholipid molecular species profile. An elevated pool of 18- and 20-carbon saturated fatty acids was detected in the ΔplsX strain. A S. pneumoniae thioesterase (TesS, SP1408) hydrolyzed acyl-ACP in vitro, and the ΔtesS ΔplsX double knockout strain was a fatty acid auxotroph. Thus, the TesS thioesterase hydrolyzed the accumulating acyl-ACP in the ΔplsX strain to liberate fatty acids that were activated by fatty acid kinase to bypass a requirement for extracellular fatty acid. This work identifies tesS as the gene responsible for the difference in exogenous fatty acid growth requirement of the ΔplsX strains of S. aureus and S. pneumoniae.


Assuntos
Proteínas de Bactérias/genética , Ácidos Graxos/metabolismo , Deleção de Sequência , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/genética , Tioléster Hidrolases/metabolismo , Proteína de Transporte de Acila/metabolismo , Sequência de Bases , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , Técnicas de Inativação de Genes , Ácido Mirístico/metabolismo , Fenótipo , Fosfolipídeos/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Streptococcus pneumoniae/metabolismo , Tioléster Hidrolases/genética
4.
Proc Natl Acad Sci U S A ; 111(29): 10532-7, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002480

RESUMO

Extracellular fatty acid incorporation into the phospholipids of Staphylococcus aureus occurs via fatty acid phosphorylation. We show that fatty acid kinase (Fak) is composed of two dissociable protein subunits encoded by separate genes. FakA provides the ATP binding domain and interacts with two distinct FakB proteins to produce acyl-phosphate. The FakBs are fatty acid binding proteins that exchange bound fatty acid/acyl-phosphate with fatty acid/acyl-phosphate presented in detergent micelles or liposomes. The ΔfakA and ΔfakB1 ΔfakB2 strains were unable to incorporate extracellular fatty acids into phospholipid. FakB1 selectively bound saturated fatty acids whereas FakB2 preferred unsaturated fatty acids. Affymetrix array showed a global perturbation in the expression of virulence genes in the ΔfakA strain. The severe deficiency in α-hemolysin protein secretion in ΔfakA and ΔfakB1 ΔfakB2 mutants coupled with quantitative mRNA measurements showed that fatty acid kinase activity was required to support virulence factor transcription. These data reveal the function of two conserved gene families, their essential role in the incorporation of host fatty acids by Gram-positive pathogens, and connects fatty acid kinase to the regulation of virulence factor transcription in S. aureus.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Graxos/metabolismo , Interações Hospedeiro-Patógeno , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Dados de Sequência Molecular , Fosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Staphylococcus aureus/patogenicidade , Especificidade por Substrato , Transcrição Gênica , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
Biochemistry ; 52(19): 3346-57, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23594205

RESUMO

Acetyl-CoA carboxylase is a biotin-dependent enzyme that catalyzes the regulated step in fatty acid synthesis. The bacterial form has three separate components: biotin carboxylase, biotin carboxyl carrier protein (BCCP), and carboxyltransferase. Catalysis by acetyl-CoA carboxylase proceeds via two half-reactions. In the first half-reaction, biotin carboxylase catalyzes the ATP-dependent carboxylation of biotin, which is covalently attached to BCCP, to form carboxybiotin. In the second half-reaction, carboxyltransferase transfers the carboxyl group from carboxybiotin to acetyl-CoA to form malonyl-CoA. All biotin-dependent carboxylases are proposed to have a two-site ping-pong mechanism in which the carboxylase and transferase activities are separate and do not interact. This posits two hypotheses: either biotin carboxylase and BCCP undergo the first half-reaction, BCCP dissociates, and then BCCP binds to carboxyltransferase, or all three constituents form an enzyme complex. To determine which hypothesis is correct, a steady-state enzyme kinetic analysis of Escherichia coli acetyl-CoA carboxylase was conducted. The results indicated the two active sites of acetyl-CoA carboxylase interact. Both in vitro and in vivo pull-down assays demonstrated that the three components of E. coli acetyl-CoA carboxylase form a multimeric complex and that complex formation is unaffected by acetyl-CoA, AMPPNP, and mRNA encoding carboxyltransferase. The implications of these findings for the regulation of acetyl-CoA carboxylase and fatty acid biosynthesis are discussed.


Assuntos
Acetil-CoA Carboxilase/química , Acetil-CoA Carboxilase/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Acetil-CoA Carboxilase/genética , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Carboxil e Carbamoil Transferases/química , Carboxil e Carbamoil Transferases/genética , Carboxil e Carbamoil Transferases/metabolismo , Domínio Catalítico , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ácido Graxo Sintase Tipo II/química , Ácido Graxo Sintase Tipo II/genética , Ácido Graxo Sintase Tipo II/metabolismo , Cinética , Modelos Biológicos , Especificidade por Substrato
6.
Structure ; 21(4): 650-7, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23499019

RESUMO

Acetyl-coenzyme A (acetyl-CoA) carboxylase is a biotin-dependent, multifunctional enzyme that catalyzes the regulated step in fatty acid synthesis. The Escherichia coli enzyme is composed of a homodimeric biotin carboxylase (BC), biotinylated biotin carboxyl carrier protein (BCCP), and an α2ß2 heterotetrameric carboxyltransferase. This enzyme complex catalyzes two half-reactions to form malonyl-coenzyme A. BC and BCCP participate in the first half-reaction, whereas carboxyltransferase and BCCP are involved in the second. Three-dimensional structures have been reported for the individual subunits; however, the structural basis for how BCCP reacts with the carboxylase or transferase is unknown. Therefore, we report here the crystal structure of E. coli BCCP complexed with BC to a resolution of 2.49 Å. The protein-protein complex shows a unique quaternary structure and two distinct interfaces for each BCCP monomer. These BCCP binding sites are unique compared to phylogenetically related biotin-dependent carboxylases and therefore provide novel targets for developing antibiotics against bacterial acetyl-CoA carboxylase.


Assuntos
Acetil-CoA Carboxilase/química , Carbono-Nitrogênio Ligases/química , Escherichia coli/enzimologia , Modelos Moleculares , Complexos Multiproteicos/química , Conformação Proteica , Cristalização , Ácido Graxo Sintase Tipo II/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...