Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 17(2): 167-173, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29251724

RESUMO

Lithium-ion capacitors (LICs) shrewdly combine a lithium-ion battery negative electrode capable of reversibly intercalating lithium cations, namely graphite, together with an electrical double-layer positive electrode, namely activated carbon. However, the beauty of this concept is marred by the lack of a lithium-cation source in the device, thus requiring a specific preliminary charging step. The strategies devised thus far in an attempt to rectify this issue all present drawbacks. Our research uncovers a unique approach based on the use of a lithiated organic material, namely 3,4-dihydroxybenzonitrile dilithium salt. This compound can irreversibly provide lithium cations to the graphite electrode during an initial operando charging step without any negative effects with respect to further operation of the LIC. This method not only restores the low CO2 footprint of LICs, but also possesses far-reaching potential with respect to designing a wide range of greener hybrid devices based on other chemistries, comprising entirely recyclable components.

2.
Phys Chem Chem Phys ; 19(40): 27204-27211, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28971202

RESUMO

A large data set of XAS (X-ray Absorption Spectroscopy) Manganese K-edge spectra has been collected operando and studied upon the electrochemical oxidation of the promising Li-ion battery anode material Li7MnN4. Using chemometric tools such as PCA (Principal Component Analysis) and MCR-ALS (Multivariate Curve resolution - Alternating Least Squares), three independent environment spectra were insulated. Based on the faradaic yield and well-chosen comparison of absorption spectrum energies within the frame of the coordination charge model, these environments were ascribed to unusual oxidation states allowed by nitride chemistry at a low potential (∼1.2 V vs. Li+/Li), i.e. Mn5+ (3d2), Mn6+ (3d1) and Mn7+ (3d0). Also, their relative amounts are discussed with regard to the long-range structural variation which can be simply described by two successive biphasic domains followed by a solid-solution behaviour. Gathering this long-range and local structure information provides a complete picture of the redox mechanisms occurring in Li7MnN4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...