Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Solid State Nucl Magn Reson ; 123: 101848, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36584544

RESUMO

Hydrogen bonding plays an important role in the structure and function of a wide range of materials. Solid-state 1H nuclear magnetic resonance (NMR) spectroscopy provides a very sensitive tool to investigate the local structure of hydrogen atoms involved in hydrogen bonding. While there is extensive 1H solid-state NMR data on O-H - - O hydrogen bonding in solid carboxylic acids, there has been no systematic 1H solid-state NMR studies of hydroxyl groups in carbohydrates (and hydroxyl groups in general). With a view to studying the hydrogen bonding in more complex materials such as cellulose polymorphs, we carried out a detailed solid-state 1H NMR investigation of the model compounds α-d-glucose and α-d-glucose monohydrate. Through a combination of fast magic-angle spinning (MAS), combined rotation and multiple pulse spectroscopy (CRAMPS), and two-dimensional (2D) correlation experiments carried out at ultrahigh magnetic fields, it was possible to assign all of the aliphatic (CH), hydroxyl (OH), and water (H2O) 1H chemical shifts in both forms of α-d-glucose. Plane-wave DFT calculations were employed to improve the hydrogen atom positions for α-d-glucose monohydrate and to calculate 1H chemical shifts, providing additional support for the experimentally determined peak assignments. Finally, the relationship between the hydroxyl 1H chemical shifts and their hydrogen bonding geometry was investigated and compared to the well-established relationship for carboxylic acid protons.

2.
Magn Reson Chem ; 57(5): 167-175, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29744919

RESUMO

Nuclear magnetic resonance (NMR) crystallography-an approach to structure determination that seeks to integrate solid-state NMR spectroscopy, diffraction, and computation methods-has emerged as an effective strategy to determine structures of difficult-to-characterize materials, including zeolites and related network materials. This paper explores how far it is possible to go in determining the structure of a zeolite framework from a minimal amount of input information derived only from solid-state NMR spectroscopy. It is shown that the framework structure of the fluoride-containing and tetramethylammonium-templated octadecasil clathrasil material can be solved from the 1D 29 Si NMR spectrum and a single 2D 29 Si NMR correlation spectrum alone, without the space group and unit cell parameters normally obtained from diffraction data. The resulting NMR-solved structure is in excellent agreement with the structures determined previously by diffraction methods. It is anticipated that NMR crystallography strategies like this will be useful for structure determination of other materials, which cannot be solved from diffraction methods alone.

3.
J Am Chem Soc ; 138(19): 6115-8, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27141817

RESUMO

(15)N-labeled rosette nanotubes were synthesized and investigated using high-field solid-state NMR spectroscopy, X-ray diffraction, atomic force microscopy, and electron microscopy. The results established the H-bond network involved in the self-assembly of the nanostructure as well as bound water molecules in the nanotube's channel.

4.
Solid State Nucl Magn Reson ; 71: 30-40, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26483329

RESUMO

One of the limiting factors to achieving highly resolved (1)H NMR spectra with (1)H homonuclear decoupling sequences is imperfections in the applied radiofrequency (RF) pulses, most notably phase transients and RF inhomogeneity. Through a series of simulations and solid-state NMR experiments, it is demonstrated that the combined effects of phase transients and RF inhomogeneity can be minimized by a combination of (i) restricting the sample to small volume of the rotor, (ii) by employing a super-cycled version of the DUMBO decoupling sequence, and (iii) by carefully adjusting the probe tuning such that the asymmetric component of phase transients is minimized. Under these optimal conditions, it was possible to clearly resolve two signals in the (1)H CRAMPS NMR spectrum of adamantane arising from the CH and CH2 protons in the molecule. It is proposed that adamantane could be a very useful setup sample for (1)H CRAMPS NMR as the two peaks are only resolved when the effects of RF inhomogeneity and phase transients are minimized.

5.
Solid State Nucl Magn Reson ; 65: 89-98, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25466355

RESUMO

An improved NMR crystallography strategy is presented for determining the structures of network materials such as zeolites from just a single two-dimensional (2D) NMR correlation spectrum that probes nearest-neighbor interactions, combined with the unit cell parameters and space group information measured in a diffraction experiment. The correlation information contained within a 2D spectrum is converted into a "connectivity matrix" which is incorporated into a cost function whose minimum is searched for using a simulated annealing algorithm. The algorithm was extensively tested on over 150 zeolite frameworks from the International Zeolite Association database of zeolite structures and shown to be very robust and efficient in reconstructing the structures from connectivity information. The structure determination of the pure silica zeolites ITQ-4, Ferrierite, and Sigma-2 from experimental 2D (29)Si double-quantum NMR spectra and powder X-ray diffraction data using this improved approach is also presented.

6.
J Am Chem Soc ; 135(15): 5641-55, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23560776

RESUMO

A general protocol is demonstrated for determining the structures of molecularly ordered but noncrystalline solids, which combines constraints provided by X-ray diffraction (XRD), one- and two-dimensional solid-state nuclear magnetic resonance (NMR) spectroscopy, and first-principles quantum chemical calculations. The approach is used to determine the structure(s) of a surfactant-directed layered silicate with short-range order in two dimensions but without long-range periodicity in three-dimensions (3D). The absence of long-range 3D molecular order and corresponding indexable XRD reflections precludes determination of a space group for this layered silicate. Nevertheless, by combining structural constraints obtained from solid-state (29)Si NMR analyses, including the types and relative populations of distinct (29)Si sites, their respective (29)Si-O-(29)Si connectivities and separation distances, with unit cell parameters (though not space group symmetry) provided by XRD, a comprehensive search of candidate framework structures leads to the identification of a small number of candidate structures that are each compatible with all of the experimental data. Subsequent refinement of the candidate structures using density functional theory calculations allows their evaluation and identification of "best" framework representations, based on their respective lattice energies and quantitative comparisons between experimental and calculated (29)Si isotropic chemical shifts and (2)J((29)Si-O-(29)Si) scalar couplings. The comprehensive analysis identifies three closely related and topologically equivalent framework configurations that are in close agreement with all experimental and theoretical structural constraints. The subtle differences among such similar structural models embody the complexity of the actual framework(s), which likely contain coexisting or subtle distributions of structural order that are intrinsic to the material.

7.
Solid State Nucl Magn Reson ; 51-52: 37-45, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23415450

RESUMO

An algorithm is presented for solving the structures of silicate network materials such as zeolites or layered silicates from solid-state (29)Si double-quantum NMR data for situations in which the crystallographic space group is not known. The algorithm is explained and illustrated in detail using a hypothetical two-dimensional network structure as a working example. The algorithm involves an atom-by-atom structure building process in which candidate partial structures are evaluated according to their agreement with Si-O-Si connectivity information, symmetry restraints, and fits to (29)Si double quantum NMR curves followed by minimization of a cost function that incorporates connectivity, symmetry, and quality of fit to the double quantum curves. The two-dimensional network material is successfully reconstructed from hypothetical NMR data that can be reasonably expected to be obtained for real samples. This advance in "NMR crystallography" is expected to be important for structure determination of partially ordered silicate materials for which diffraction provides very limited structural information.

8.
Magn Reson Chem ; 48 Suppl 1: S113-21, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20623826

RESUMO

Combining quantum-chemical calculations and ultrahigh-field NMR measurements of (29)Si chemical shielding (CS) tensors has provided a powerful approach for probing the fine details of zeolite crystal structures. In previous work, the quantum-chemical calculations have been performed on 'molecular fragments' extracted from the zeolite crystal structure using Hartree-Fock methods (as implemented in Gaussian). Using recently acquired ultrahigh-field (29) Si NMR data for the pure silica zeolite ITQ-4, we report the results of calculations using recently developed quantum-chemical calculation methods for periodic crystalline solids (as implemented in CAmbridge Serial Total Energy Package (CASTEP) and compare these calculations to those calculated with Gaussian. Furthermore, in the context of NMR crystallography of zeolites, we report the completion of the NMR crystallography of the zeolite ITQ-4, which was previously solved from NMR data. We compare three options for the 'refinement' of zeolite crystal structures from 'NMR-solved' structures: (i) a simple target-distance based geometry optimization, (ii) refinement of atomic coordinates in which the differences between experimental and calculated (29)Si CS tensors are minimized, and (iii) refinement of atomic coordinates to minimize the total energy of the lattice using CASTEP quantum-chemical calculations. All three refinement approaches give structures that are in remarkably good agreement with the single-crystal X-ray diffraction structure of ITQ-4.


Assuntos
Espectroscopia de Ressonância Magnética , Teoria Quântica , Zeolitas/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética/normas , Modelos Moleculares , Estrutura Molecular , Padrões de Referência , Zeolitas/síntese química
9.
Chemphyschem ; 11(1): 260-8, 2010 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-19924756

RESUMO

Room-temperature ionic liquids (RTILs) are gaining increasing interest and are considered part of the green chemistry paradigm due to their negligible vapour pressure and ease of recycling. Evidence of liquid-state order, observed by IR and Raman spectroscopy, diffraction studies, and simulated by ab initio methods, has been reported in the literature. Here, quadrupolar nuclei are used as NMR probes to extract information about the solid and possible residual order in the liquid state of RTILs. To this end, the anisotropic nature and field dependence of quadrupolar and chemical shift interactions are exploited. Relaxation time measurements and a search for residual second-order quadrupolar coupling were employed to investigate the molecular motions present in the liquid state and infer what kind of order is present. The results obtained indicate that on a timescale of approximately 10(-8) sec or longer, RTILs behave as isotropic liquids without residual order.

10.
Phys Chem Chem Phys ; 11(11): 1825-37, 2009 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-19290355

RESUMO

Subtle structural details of siliceous zeolites are probed by using two-bond scalar (J) coupling constants to characterize covalently bonded 29Si-O-29Si site pairs and local framework order. Solid-state two-dimensional (2D) 29Si{29Si} NMR measurements and first-principles calculations of 2J(29Si-O-29Si) couplings shed insights on both the local structures of siliceous zeolites Sigma-2 and ZSM-12, as well as the sensitivity of J couplings for detailed characterization analyses. DFT calculations on a model linear silicate dimer show that 2J(Si-O-Si) couplings have complicated multiple angular dependencies that make semi-empirical treatments impractical, but which are amenable to cluster approaches for accurate J-coupling calculations in zeolites. DFT calculations of 2J(29Si-O-29Si) couplings of the siliceous zeolite Sigma-2, whose framework structure is known to high accuracy from single-crystal X-ray diffraction studies, yield excellent agreement between calculated and experimentally measured 2J(Si-O-Si) couplings. For the siliceous zeolite ZSM-12, calculated 2J(29Si-O-29Si) couplings based on less-certain powder X-ray diffraction analyses deviate significantly from experimental values, while a refined structure based on 29Si chemical-shift-tensor analyses shows substantially improved agreement. 29Si J-coupling interactions can be used as sensitive probes of local structures of zeolitic frameworks and offer new opportunities for refining and solving complicated structures, in combination with complementary scattering, modeling, and other nuclear spin interactions.

11.
J Phys Chem A ; 112(49): 12527-9, 2008 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19007195

RESUMO

This Letter describes recent work investigating the solid-state NMR spectra of (35)Cl nuclei in an assortment of ionic liquids under static and MAS conditions at field strengths of 9.4 and 21.1 T. At high field it was possible to resolve and extract information from multiple unique crystallographic sites and to resolve otherwise complex spectra that were analyzed to extract information regarding the electric field gradient (EFG) and chemical shift tensors, including their relative orientation. The NMR parameters were found to be typical of organic salts in general.

12.
Phys Chem Chem Phys ; 10(26): 3857-60, 2008 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-18688383

RESUMO

(1)H magic-angle spinning (MAS) NMR spectra of p-tert-butylcalix[4]arene inclusion compounds with toluene and pyridine show large complexation-induced shifts of the guest proton resonances arising from additional magnetic shielding caused by the aromatic rings of the cavities of the host calixarene lattice. In combination with ab initio calculations, these observations can be employed for NMR crystallography of host-guest complexes, providing important spatial information about the location of the guest molecules in the host cavities.


Assuntos
Calixarenos/química , Simulação por Computador , Cristalografia , Espectroscopia de Ressonância Magnética , Estrutura Molecular
13.
J Magn Reson ; 194(1): 136-46, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18656402

RESUMO

A strategy for performing crystal structure refinements with NMR chemical shift tensors is described in detail and implemented for the zeolite silica-ZSM-12 (framework type code MTW). The 29Si chemical shift tensors were determined from a slow magic-angle spinning spectrum obtained at an ultrahigh magnetic field of 21.1T. The Si and O atomic coordinate parameters were optimized to give the best agreement between experimentally measured and ab initio calculated principal components of the 29Si chemical shift tensors, with the closest Si-O, O-O, and Si-Si distances restrained to correspond with the distributions of the distances found in a set of single-crystal X-ray diffraction (XRD) structures of high-silica zeolites. An improved structure for the silica-ZSM-12 zeolite, compared to a prior structure derived from powder XRD data, is obtained in which the agreement between the experimental and calculated 29Si chemical shift tensors is dramatically improved, the Si-O, O-O, and Si-Si distances correspond to the expected distributions, while the calculated powder XRD pattern remains in good agreement with the experimental powder XRD data. It is anticipated that this "NMR crystallography" structure refinement strategy will be an important tool for the accurate structure determination of materials that are difficult to fully characterize by traditional diffraction methods.


Assuntos
Algoritmos , Cristalografia/métodos , Espectroscopia de Ressonância Magnética/métodos , Dióxido de Silício/química , Silício/química , Zeolitas/química , Isótopos/análise , Isótopos/química , Conformação Molecular , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Silício/análise
14.
J Am Chem Soc ; 130(20): 6306-7, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18433131

RESUMO

An NMR structure refinement method for the NMR crystallography of zeolites is presented and demonstrated to give an NMR-determined crystal structure for the zeolite Sigma-2 that is in very good agreement with the single-crystal X-ray diffraction structure. The Si coordinates of the zeolite framework were solved from 29Si double-quantum NMR data obtained at a low magnetic field strength (7.0 T) and the Si and O coordinates were subsequently refined using the principal components of 29Si chemical shift tensors experimentally measured at an ultrahigh-field (21.1 T) and calculated using ab initio quantum chemical methods.

15.
J Am Chem Soc ; 130(10): 3095-105, 2008 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-18281985

RESUMO

The principal components of zeolite 29Si magnetic shielding tensors have been accurately measured and calculated for the first time. The experiments were performed at an ultrahigh magnetic field of 21.1 T in order to observe the small anisotropies of the 29Si shielding interactions that arise for Si atoms in near-tetrahedral geometries. A robust two-dimensional (2D) chemical shift anisotropy (CSA) recoupling pulse sequence was employed that enables quasi-static powder patterns to be resolved according to the isotropic chemical shifts. For the zeolites Sigma-2 and ZSM-12, it is demonstrated that the 29Si chemical shift (CS) tensor components measured by the recoupling experiment are in excellent agreement with those determined from spinning sidebands in slow magic-angle spinning (MAS) experiments. For the zeolite ZSM-5, the principal components of the 29Si CS tensors of 15 of the 24 Si sites were measured using the 2D CSA recoupling experiment, a feat that would not be possible with a slow MAS experiment due to the complexity of the spectrum. A simple empirical relationship between the 29Si CS tensors and local structural parameters could not be established. However, the 29Si magnetic shielding tensors calculated using Hartree-Fock ab initio calculations on clusters derived from the crystal structures are in excellent agreement with the experimental results. The accuracy of the calculations is strongly dependent on the quality of the crystal structure used in the calculation, indicating that the 29Si magnetic shielding interaction is extremely sensitive to the local structure around each Si atom. It is anticipated that the measurement and calculation of 29Si shielding tensors could be incorporated into the "NMR crystallography" of zeolites and other related silicate materials, possibly being used for structure refinements that may lead to crystal structures with very accurate Si and O atomic coordinates.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Magnetismo , Silício/química , Zeolitas/química , Isótopos , Espectroscopia de Ressonância Magnética/normas , Teoria Quântica , Padrões de Referência
16.
Phys Chem Chem Phys ; 9(9): 1093-8, 2007 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-17311152

RESUMO

A method is presented for detecting multiple xenon atoms in cavities of solid-state inclusion compounds using (129)Xe double quantum NMR spectroscopy. Double quantum filtered (129)Xe NMR spectra, performed on the xenon clathrate of Dianin's compound were obtained under high-resolution Magic-Angle Spinning (MAS) conditions, by recoupling the weak (129)Xe-(129)Xe dipole-dipole couplings that exist between xenon atoms in close spatial proximity. Because the (129)Xe-(129)Xe dipole-dipole couplings are generally weak due to dynamics of the atoms and to large internuclear separations, and since the (129)Xe Chemical Shift Anisotropy (CSA) tends to be relatively large, a very robust dipolar recoupling sequence was necessary, with the symmetry-based SR26 dipolar recoupling sequence proving appropriate. We have also attempted to measure the (129)Xe-(129)Xe dipole-dipole coupling constant between xenon atoms in the cavities of the xenon-Dianin's compound clathrate and have found that the dynamics of the xenon atoms (as investigated with molecular dynamics simulations) as well as (129)Xe multiple spin effects complicate the analysis. The double quantum NMR method is useful for peak assignment in (129)Xe NMR spectra because peaks arising from different types of absorption/inclusion sites or from different levels of occupancy of single sites can be distinguished. The method can also help resolve ambiguities in diffraction experiments concerning the order/disorder in a material.


Assuntos
Cromanos/química , Espectroscopia de Ressonância Magnética/métodos , Teoria Quântica , Isótopos de Xenônio/química , Espectroscopia de Ressonância Magnética/normas , Modelos Moleculares , Padrões de Referência , Fatores de Tempo
17.
J Magn Reson ; 185(1): 173-8, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17188919

RESUMO

A two-dimensional NMR experiment for estimating proton chemical shift anisotropies (CSAs) in solid powders under magic-angle spinning conditions is demonstrated in which 1H CSAs are reintroduced with a symmetry-based recoupling sequence while the individual proton sites are resolved according to their isotropic chemical shifts by magic-angle spinning (MAS) or combined rotation and multiple pulse (CRAMPS) homonuclear decoupling. The experiments where carried out on an ultrahigh-field solid-state NMR instrument (900 MHz 1H frequency) which leads to increased resolution and reliability of the measured 1H CSAs. The experiment is expected to be important for investigating hydrogen bonding in solids.


Assuntos
Algoritmos , Biopolímeros/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Modelos Moleculares , Prótons , Anisotropia , Simulação por Computador , Pós , Marcadores de Spin
18.
J Am Chem Soc ; 128(36): 11860-71, 2006 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-16953626

RESUMO

An optimized and automated protocol for determining the location of guest sorbate molecules in highly siliceous zeolites from (29)Si INADEQUATE and (1)H/(29)Si cross polarization (CP) magic-angle spinning (MAS) NMR experiments is described. With the peaks in the (29)Si MAS NMR spectrum assigned to the unique Si sites in the zeolite framework by a 2D (29)Si INADEQUATE experiment, the location of the sorbate molecule is found by systematically searching for sorbate locations for which the measured rates of (1)H/(29)Si cross polarization of the different Si sites correlate linearly with (1)H/(29)Si second moments calculated from H-Si distances. Due to the (1)H/(29)Si cross polarization being in the "slow CP regime" for many zeolite-sorbate complexes, it is proposed that the CP rate constants are best measured by (1)H/(29)Si cross polarization drain experiments, if possible, to avoid complications that may arise from fast (1)H and (29)Si T(1)rho relaxations. An algorithm for determining the sorbate molecule location is described in detail. A number of ways to effectively summarize and display the large number of solutions which typically result from a prediction of the structure from the CP MAS NMR data are presented, including estimates of the errors involved in the structure determinations. As a working example throughout this paper, the structure of the low loaded p-dichlorobenzene/ZSM-5 complex is determined under different conditions from solid-state (1)H/(29)Si CP MAS NMR data, and the solutions are shown to be in excellent agreement with the known single-crystal X-ray diffraction structure. This structure determination approach is shown to be quite insensitive to the use of relative rate constants rather than absolute values, to the detailed structure of the zeolite framework, and relatively insensitive to temperature and motions.

19.
J Magn Reson ; 177(2): 307-17, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16169757

RESUMO

We examine the influence of continuous-wave heteronuclear decoupling on symmetry-based double-quantum homonuclear dipolar recoupling, using experimental measurements, numerical simulations, and average Hamiltonian theory. There are two distinct regimes in which the heteronuclear interference effects are minimized. The first regime utilizes a moderate homonuclear recoupling field and a strong heteronuclear decoupling field; the second regime utilizes a strong homonuclear recoupling field and a weak or absent heteronuclear decoupling field. The second regime is experimentally accessible at moderate or high magic-angle-spinning frequencies and is particularly relevant for many realistic applications of solid-state NMR recoupling experiments to organic or biological materials.


Assuntos
Alanina/química , Fumaratos/química , Glicina/química , Ressonância Magnética Nuclear Biomolecular/métodos , Isótopos de Carbono , Estrutura Molecular , Isótopos de Nitrogênio
20.
J Am Chem Soc ; 127(29): 10365-70, 2005 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-16028949

RESUMO

Since zeolites are notoriously difficult to prepare as large single crystals, structure determination usually relies on powder X-ray diffraction (XRD). However, structure solution (i.e., deriving an initial structural model) directly from powder XRD data is often very difficult due to the diffraction phase problem and the high degree of overlap between the individual reflections, particularly for materials with the structural complexity of most zeolites. Here, we report a method for structure determination of zeolite crystal structures that combines powder XRD and nuclear magnetic resonance (NMR) spectroscopy in which the crucial step of structure solution is achieved using solid-state (29)Si double-quantum dipolar recoupling NMR, which probes the distance-dependent dipolar interactions between naturally abundant (29)Si nuclei in the zeolite framework. For two purely siliceous zeolite blind test samples, we demonstrate that the NMR data can be combined with the unit cell parameters and space group to solve structural models that refine successfully against the powder XRD data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...