Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Exp Allergy ; 48(8): 1035-1049, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29752757

RESUMO

BACKGROUND: Both subcutaneous and sublingual allergen immunotherapy (SCIT and SLIT) have been shown to effectively suppress allergic manifestations upon allergen exposure, providing long-term relief from symptoms in allergic disorders including allergic asthma. Clinical studies directly comparing SCIT and SLIT report a different kinetics and magnitude of immunological changes induced during treatment. Comparative studies into the mechanisms underlying immune suppression in SCIT and SLIT are lacking. OBJECTIVE: We aimed to establish an experimental model for grass pollen (GP) SCIT and SLIT that would allow a head-to-head comparison of the two treatments. METHODS: BALB/c mice were sensitized with GP extract, followed by SCIT and SLIT treatments with various GP dosages. Subsequently, we challenged mice with GP and measured airway responsiveness (AHR), GP-specific immunoglobulins, ear swelling tests (EST), eosinophilic inflammation in bronchoalveolar lavage fluid (BALF), and T cell cytokine release after restimulation of lung cells (IL-5, IL-10, and IL-13). RESULTS: We find that SLIT treatment was able to suppress allergen-induced AHR, while allergic inflammation was not effectively suppressed even at the highest GP dose in this model. In contrast, SCIT treatment induced higher levels of GP-specific IgG1, while SLIT was superior in inducing a GP-specific IgG2a response, which was associated with increased Th1 activity in lung tissue after SLIT, but not SCIT treatment. Interestingly, SCIT was able to suppress Th2-type cytokine production in lung cell suspensions, while SLIT failed to do so. CONCLUSIONS AND CLINICAL RELEVANCE: In conclusion, GP-SCIT suppresses Th2 inflammation and induced neutralizing antibodies, while GP-SLIT suppresses the clinically relevant lung function parameters in an asthma mouse model, indicating that the two application routes depend on partially divergent mechanisms of tolerance induction. Interestingly, these data mirror observations in clinical studies, underscoring the translational value of these mouse models.


Assuntos
Alérgenos/imunologia , Anticorpos Neutralizantes/imunologia , Asma/imunologia , Pólen/imunologia , Células Th2/imunologia , Administração Sublingual , Animais , Especificidade de Anticorpos/imunologia , Asma/diagnóstico , Asma/terapia , Biomarcadores , Citocinas/metabolismo , Dessensibilização Imunológica , Modelos Animais de Doenças , Eosinófilos/imunologia , Eosinófilos/metabolismo , Feminino , Imunoglobulina G/imunologia , Injeções Subcutâneas , Camundongos , Hipersensibilidade Respiratória/diagnóstico , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/terapia , Imunoterapia Sublingual , Células Th2/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 307(3): L240-51, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24816488

RESUMO

Exposure to cigarette smoke (CS) is the main risk factor for developing chronic obstructive pulmonary disease and can induce airway epithelial cell damage, innate immune responses, and airway inflammation. We hypothesized that cell survival factors might decrease the sensitivity of airway epithelial cells to CS-induced damage, thereby protecting the airways against inflammation upon CS exposure. Here, we tested whether Pim survival kinases could protect from CS-induced inflammation. We determined expression of Pim kinases in lung tissue, airway inflammation, and levels of keratinocyte-derived cytokine (KC) and several damage-associated molecular patterns in bronchoalveolar lavage in mice exposed to CS or air. Human bronchial epithelial BEAS-2B cells were treated with CS extract (CSE) in the presence or absence of Pim1 inhibitor and assessed for loss of mitochondrial membrane potential, induction of cell death, and release of heat shock protein 70 (HSP70). We observed increased expression of Pim1, but not of Pim2 and Pim3, in lung tissue after exposure to CS. Pim1-deficient mice displayed a strongly enhanced neutrophilic airway inflammation upon CS exposure compared with wild-type controls. Inhibition of Pim1 activity in BEAS-2B cells increased the loss of mitochondrial membrane potential and reduced cell viability upon CSE treatment, whereas release of HSP70 was enhanced. Interestingly, we observed release of S100A8 but not of double-strand DNA or HSP70 in Pim1-deficient mice compared with wild-type controls upon CS exposure. In conclusion, we show that expression of Pim1 protects against CS-induced cell death in vitro and neutrophilic airway inflammation in vivo. Our data suggest that the underlying mechanism involves CS-induced release of S100A8 and KC.


Assuntos
Células Epiteliais/metabolismo , Inflamação/metabolismo , Pulmão/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Fumar/efeitos adversos , Fumar/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Morte Celular/fisiologia , Células Cultivadas , Quimiocinas/metabolismo , Células Epiteliais/patologia , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Inflamação/patologia , Pulmão/patologia , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/metabolismo , Neutrófilos/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Fumar/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...