Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(18): 5201-5210, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555658

RESUMO

Bacterioplankton underpin biogeochemical cycles and an improved understanding of the patterns and drivers of variability in their distribution is needed to determine their wider functioning and importance. Sharp environmental gradients and dispersal barriers associated with ocean fronts are emerging as key determinants of bacterioplankton biodiversity patterns. We examined how the development of the Celtic Sea Front (CF), a tidal mixing front on the Northwest European Shelf affects bacterioplankton communities. We performed 16S-rRNA metabarcoding on 60 seawater samples collected from three depths (surface, 20 m and seafloor), across two research cruises (May and September 2018), encompassing the intra-annual range of the CF intensity. Communities above the thermocline of stratified frontal waters were clearly differentiated and less diverse than those below the thermocline and communities in the well-mixed waters of the Irish Sea. This effect was much more pronounced in September, when the CF was at its peak intensity. The stratified zone likely represents a stressful environment for bacterioplankton due to a combination of high temperatures and low nutrients, which fewer taxa can tolerate. Much of the observed variation was driven by Synechococcus spp. (cyanobacteria), which were more abundant within the stratified zone and are known to thrive in warm oligotrophic waters. Synechococcus spp. are key contributors to global primary productivity and carbon cycling and, as such, variability driven by the CF is likely to influence regional biogeochemical processes. However, further studies are required to explicitly link shifts in community structure to function and quantify their wider importance to pelagic ecosystems.


Assuntos
Organismos Aquáticos , Ecossistema , Estações do Ano , Biodiversidade , Água do Mar/microbiologia , RNA Ribossômico 16S/genética
2.
J Anim Ecol ; 92(3): 698-709, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617677

RESUMO

Invasive mammals are responsible for the majority of native species extinctions on islands. While most of these extinction events will be due to novel interactions between species (e.g. exotic predators and naive prey), it is more unusual to find incidences where a newly invasive species causes the decline/extinction of a native species on an island when they normally coexist elsewhere in their overlapping mainland ranges. We investigated if resource competition between two insectivorous small mammals was playing a significant role in the rapid replacement of the native pygmy shrew Sorex minutus in the presence of the recently invading greater white-toothed shrew Crocidura russula on the island of Ireland. We used DNA metabarcoding of gut contents from >300 individuals of both species to determine each species' diet and measured the body size (weight and length) during different stages of the invasion in Ireland (before, during and after the species come into contact with one another) and on a French island where both species have long coexisted (acting as a natural 'control' site). Dietary composition, niche width and overlap and body size were compared in these different stages. The body size of the invasive C. russula and composition of its diet changes between when it first invades an area and after it becomes established. During the initial stages of the invasion, individual shrews are larger and consume larger sized invertebrate prey species. During later stages of the invasion, C. russula switches to consuming smaller prey taxa that are more essential for the native species. As a result, the level of interspecific dietary overlap increases from between 11% and 14% when they first come into contact with each other to between 39% and 46% after the invasion. Here we show that an invasive species can quickly alter its dietary niche in a new environment, ultimately causing the replacement of a native species. In addition, the invasive shrew could also be potentially exhausting local resources of larger invertebrate species. These subsequent changes in terrestrial invertebrate communities could have severe impacts further downstream on ecosystem functioning and services.


Assuntos
Ecossistema , Musaranhos , Animais , Musaranhos/genética , Invertebrados , Espécies Introduzidas , Dieta/veterinária
3.
Mol Ecol Resour ; 23(1): 41-51, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36017818

RESUMO

Dietary metabarcoding has vastly improved our ability to analyse the diets of animals, but it is hampered by a plethora of technical limitations including potentially reduced data output due to the disproportionate amplification of the DNA of the focal predator, here termed "the predator problem". We review the various methods commonly used to overcome this problem, from deeper sequencing to exclusion of predator DNA during PCR, and how they may interfere with increasingly common multipredator-taxon studies. We suggest that multiprimer approaches with an emphasis on achieving both depth and breadth of prey detections may overcome the issue to some extent, although multitaxon studies require further consideration, as highlighted by an empirical example. We also review several alternative methods for reducing the prevalence of predator DNA that are conceptually promising but require additional empirical examination. The predator problem is a key constraint on molecular dietary analyses but, through this synthesis, we hope to guide researchers in overcoming this in an effective and pragmatic way.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Primers do DNA/genética , Reação em Cadeia da Polimerase/métodos , DNA/análise , Dieta
4.
Mol Ecol ; 31(3): 993-1006, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34775636

RESUMO

Carnivores tend to exhibit a lack of (or less pronounced) genetic structure at continental scales in both a geographic and temporal sense and this can confound the identification of post-glacial colonization patterns in this group. In this study we used genome-wide data (using genotyping by sequencing [GBS]) to reconstruct the phylogeographic history of a widespread carnivore, the red fox (Vulpes vulpes), by investigating broad-scale patterns of genomic variation, differentiation and admixture amongst contemporary populations in Europe. Using 15,003 single nucleotide polymorphisms (SNPs) from 524 individuals allowed us to identify the importance of refugial regions for the red fox in terms of endemism (e.g., Iberia). In addition, we tested multiple post-glacial recolonization scenarios of previously glaciated regions during the Last Glacial Maximum using an Approximate Bayesian Computation (ABC) approach that were unresolved from previous studies. This allowed us to identify the role of admixture from multiple source population post-Younger Dryas in the case of Scandinavia and ancient land-bridges in the colonization of the British Isles. A natural colonization of Ireland was deemed more likely than an ancient human-mediated introduction as has previously been proposed and potentially points to a larger mammalian community on the island in the early post-glacial period. Using genome-wide data has allowed us to tease apart broad-scale patterns of structure and diversity in a widespread carnivore in Europe that was not evident from using more limited marker sets and provides a foundation for next-generation phylogeographic studies in other non-model species.


Assuntos
Raposas , Variação Genética , Animais , Teorema de Bayes , Europa (Continente) , Raposas/genética , Humanos , Filogenia , Filogeografia
5.
Sci Total Environ ; 801: 149724, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34467903

RESUMO

Finding more efficient ways to monitor and estimate the diversity of mammalian communities is a major step towards their management and conservation. Environmental DNA (eDNA) from river water has recently been shown to be a viable method for biomonitoring mammalian communities. Most of the studies to date have focused on the potential for eDNA to detect individual species, with little focus on describing patterns of community diversity and structure. Here, we first focus on the sampling effort required to reliably map the diversity and distribution of semi-aquatic and terrestrial mammals and allow inferences of community structure surrounding two rivers in southeastern England. Community diversity and composition was then assessed based on species richness and ß-diversity, with differences between communities partitioned into nestedness and turnover, and the sampling effort required to rapidly detect semi-aquatic and terrestrial species was evaluated based on species accumulation curves and occupancy modelling. eDNA metabarcoding detected 25 wild mammal species from five orders, representing the vast majority (82%) of the species expected in the area. The required sampling effort varied between orders, with common species (generally rodents, deer and lagomorphs) more readily detected, with carnivores detected less frequently. Measures of species richness differed between rivers (both overall and within each mammalian order) and patterns of ß-diversity revealed the importance of species replacement in sites within each river, against a pattern of species loss between the two rivers. eDNA metabarcoding demonstrated its capability to rapidly detect mammal species, allowing inferences of community composition that will better inform future sampling strategies for this Class. Importantly, this study highlights the potential use of eDNA data for investigating mammalian community dynamics over different spatial scales.


Assuntos
DNA Ambiental , Cervos , Animais , Biodiversidade , Código de Barras de DNA Taxonômico , Monitoramento Ambiental , Rios
6.
Proc Biol Sci ; 288(1957): 20210552, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34403636

RESUMO

Interactions between hosts and their resident microbial communities are a fundamental component of fitness for both agents. Though recent research has highlighted the importance of interactions between animals and their bacterial communities, comparative evidence for fungi is lacking, especially in natural populations. Using data from 49 species, we present novel evidence of strong covariation between fungal and bacterial communities across the host phylogeny, indicative of recruitment by hosts for specific suites of microbes. Using co-occurrence networks, we demonstrate marked variation across host taxonomy in patterns of covariation between bacterial and fungal abundances. Host phylogeny drives differences in the overall richness of bacterial and fungal communities, but the effect of diet on richness was only evident in the mammalian gut microbiome. Sample type, tissue storage and DNA extraction method also affected bacterial and fungal community composition, and future studies would benefit from standardized approaches to sample processing. Collectively these data indicate fungal microbiomes may play a key role in host fitness and suggest an urgent need to study multiple agents of the animal microbiome to accurately determine the strength and ecological significance of host-microbe interactions.


Assuntos
Microbiota , Micobioma , Animais , Bactérias/genética , Interações entre Hospedeiro e Microrganismos , Filogenia
7.
Sci Rep ; 9(1): 16953, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740751

RESUMO

Modern agricultural practices have vastly increased crop production but negatively affected soil health. As such, there is a call to develop sustainable, ecologically-viable approaches to food production. Mixed-cropping of plant varieties can increase yields, although impacts on plant-associated microbial communities are unclear, despite their critical role in plant health and broader ecosystem function. We investigated how mixed-cropping between two field pea (Pisum sativum L.) varieties (Winfreda and Ambassador) influenced root-associated microbial communities and yield. The two varieties supported significantly different fungal and bacterial communities when grown as mono-crops. Mixed-cropping caused changes in microbial communities but with differences between varieties. Root bacterial communities of Winfreda remained stable in response to mixed-cropping, whereas those of Ambassador became more similar to Winfreda. Conversely, root fungal communities of Ambassador remained stable under mixed-cropping, and those of Winfreda shifted towards the composition of Ambassador. Microbial co-occurrence networks of both varieties were stronger and larger under mixed-cropping, which may improve stability and resilience in agricultural soils. Both varieties produced slightly higher yields under mixed-cropping, although overall Ambassador plants produced higher yields than Winfreda plants. Our results suggest that variety diversification may increase yield and promote microbial interactions.


Assuntos
Produção Agrícola/métodos , Microbiota/fisiologia , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/microbiologia , Raízes de Plantas/microbiologia , Bactérias/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Fungos/genética , Microbiota/genética
8.
J Fish Biol ; 95(2): 679-682, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31183856

RESUMO

We focus on a case study along an English canal comparing environmental DNA (eDNA) metabarcoding with two types of electrofishing techniques (wade-and-reach and boom-boat). In addition to corroborating data obtained by electrofishing, eDNA provided a wider snapshot of fish assemblages. Given the semi-lotic nature of canals, we encourage the use of eDNA as a fast and cost-effective tool to detect and monitor whole fish communities.


Assuntos
Código de Barras de DNA Taxonômico , Monitoramento Ambiental/métodos , Peixes/fisiologia , Animais , Biodiversidade , DNA/genética , Ecossistema , Inglaterra , Peixes/classificação , Peixes/genética , Água Doce , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...