Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 160: 106755, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39326250

RESUMO

PURPOSE: Finite element (FE) models for determining the orthodontic forces delivered by clear aligners often lack validation. The aim of this study was to develop and validate accurate FE models for clear aligners, considering the small but important geometrical variations from the thermoforming process and the creep behavior of the aligner material. METHODS AND MATERIALS: The tooth misalignment considered was a 2.4° torque aberration (rotation about the mesial-distal axis at the level of the center of resistance) of the maxillary left central incisor. FE models were created from Micro-CT scans of a model dental arch and five nominally identical aligners with the aforementioned misfit. Fitting of the aligners onto the dental arch was simulated using Abaqus's Interference Fit function, followed by surface-to-surface frictional interaction. Stress relaxation of the aligner material was measured using double-cantilever beam bending and modeled with a Prony series. The assembled FE models were validated by comparing the predicted forces and moments delivered to the maxillary left central incisor with experimental data, obtained with a custom-built but fully calibrated apparatus. RESULTS: Good agreement between prediction and measurement was obtained for both the short- and long-term forces and moments. In the short-term, i.e., after 30 s, the dominant force in the labial-lingual direction had a maximum difference of 2.9% between experiment and simulation, and the dominant moment about the mesial-distal axis had a maximum difference of 8.3%. In the long-term, i.e., after 4 h, the experimental and numerical forces had a maximum difference of 8.4%. There were statistically significant differences in the forces delivered among the nominally identical aligners, which were predicted by the geometrically accurate FE models and attributed to the variations in the points of contact between the aligners and the dental arch. The decay in force applied was affected by both the viscoelastic material behavior and friction between the aligner and arch. CONCLUSION: For accurate prediction of the forces and moments delivered by thermoplastic aligners, FE models that can accurately capture the point contacts between the aligners and the underlying teeth are essential. Stress relaxation of the aligners could be adequately modeled using the Prony series to represent the temporal changes of their elastic modulus.

2.
J Mech Behav Biomed Mater ; 134: 105404, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35933799

RESUMO

PURPOSE: Clear thermoplastic aligners have become popular in orthodontics, but the biomechanics of these devices is not well understood. Neither is the tooth movement induced by such devices. The aim of this study was to develop and validate finite element (FE) models for clear thermoplastic teeth aligners for orthodontic force prediction. METHODS AND MATERIALS: FE models were created from Micro-CT scans of an aligner and a model arch of teeth with one of the incisors tipped buccal-lingually by 2.4°. The models were uniformly meshed with 0.3-mm long elements. Linear-elastic mechanical properties provided by the material manufacturers were used. Fitting of the two components was simulated using Abaqus's interference fit, followed by frictional surface-to-surface interaction. The assembled FE model was validated by comparing its prediction for the teeth-aligner gaps and aligner surface strains with experimental data. The experimental teeth-aligner gaps were obtained from the Micro-CT scans whereas the aligner surface strains were measured using a 2-camera digital image correlation (DIC) system. RESULTS: Good agreement between prediction and measurement was obtained for both the teeth-aligner gaps and aligner surface strains. The linear regression between prediction and measurement for teeth-aligner gaps sampled at different positions had a R2 value of 0.99. The mean difference between prediction and measurement for the aligner surface strains (von Mises) over 1544 nodes on the labial side and 1929 nodes on the lingual side was 0.07% and 0.01%, respectively, both being lower than the mean background noise. CONCLUSION: A FE model for clear thermoplastic teeth aligners has been successfully developed and validated. The model can therefore be used with confidence to predict the forces and moments applied to teeth by the aligners, thus improving our understanding of the biomechanics of such devices and the tooth movement they induce.


Assuntos
Ortodontia , Técnicas de Movimentação Dentária , Análise de Elementos Finitos , Cabeça , Incisivo , Técnicas de Movimentação Dentária/métodos
3.
Sci Rep ; 9(1): 8826, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217535

RESUMO

Effects of combined rising sea temperature and increasing sea level on coral reefs, both factors associated with global warming, have rarely been addressed. In this ~40 y study of shallow reefs in the eastern Indian Ocean, we show that a rising relative sea level, currently estimated at ~11 mm y-1, has not only promoted coral cover but also has potential to limit damaging effects of thermally-induced bleaching. In 2010 the region experienced the most severe bleaching on record with corals subject to sea temperatures of >31 °C for 7 weeks. While the reef flats studied have a common aspect and are dominated by a similar suite of coral species, there was considerable spatial variation in their bleaching response which corresponded with reef-flat depth. Greatest loss of coral cover and community structure disruption occurred on the shallowest reef flats. Damage was less severe on the deepest reef flat where corals were subject to less aerial exposure, rapid flushing and longer submergence in turbid waters. Recovery of the most damaged sites took only ~8 y. While future trajectories of these resilient reefs will depend on sea-level anomalies, and frequency of extreme bleaching the positive role of rising sea level should not be under-estimated.


Assuntos
Antozoários/fisiologia , Oceanos e Mares , Elevação do Nível do Mar , Temperatura , Água , Animais , Recifes de Corais , Ecossistema , Sistemas de Informação Geográfica , Tailândia , Fatores de Tempo
4.
Diabetologia ; 51(6): 1008-17, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18437350

RESUMO

AIMS/HYPOTHESIS: Hyperglycaemia, a key feature of diabetes, is associated with non-enzymatic glycation of plasma proteins. We have shown previously that the reactive alpha-oxoaldehyde, methylglyoxal, non-enzymatically glycates apolipoprotein (Apo)A-I, the main apolipoprotein of HDL, and prevents it from activating lecithin:cholesterol acyltransferase (LCAT), the enzyme that generates almost all of the cholesteryl esters in plasma. This study investigates whether the glycation inhibitors aminoguanidine and pyridoxamine, the insulin sensitiser metformin and the cross-link breaker alagebrium can inhibit and/or reverse the methylglyoxal-mediated glycation of ApoA-I and whether these changes can preserve or restore the ability of ApoA-I to activate LCAT. METHODS: Inhibition of ApoA-I glycation was assessed by incubating aminoguanidine, pyridoxamine, metformin and alagebrium with mixtures of methylglyoxal and discoidal reconstituted HDL (rHDL) containing phosphatidylcholine and ApoA-I, ([A-I]rHDL). Glycation was assessed as the modification of ApoA-I arginine, lysine and tryptophan residues, and by the extent of ApoA-I cross-linking. The reversal of ApoA-I glycation was investigated by pre-incubating discoidal (A-I)rHDL with methylglyoxal, then incubating the modified rHDL with aminoguanidine, pyridoxamine or alagebrium. RESULTS: Aminoguanidine, pyridoxamine, metformin and alagebrium all decreased the methylglyoxal-mediated glycation of the ApoA-I in discoidal rHDL and conserved the ability of the particles to act as substrates for LCAT. However, neither aminoguanidine, pyridoxamine nor alagebrium could reverse the glycation of ApoA-I or restore its ability to activate LCAT. CONCLUSIONS/INTERPRETATION: Glycation inhibitors, insulin sensitisers and cross-link breakers are important for preserving normal HDL function in diabetes.


Assuntos
Apolipoproteína A-I/sangue , Reagentes de Ligações Cruzadas/farmacologia , Apolipoproteína A-I/efeitos dos fármacos , Arginina/metabolismo , Glicosilação , Guanidinas/farmacologia , Humanos , Lipoproteínas HDL/sangue , Lipoproteínas HDL/efeitos dos fármacos , Lisina/metabolismo , Metformina/farmacologia , Fosfatidilcolina-Esterol O-Aciltransferase/sangue , Piridoxamina/farmacologia , Aldeído Pirúvico/farmacologia , Tiazóis/farmacologia , Triptofano/metabolismo
5.
Diabetologia ; 50(3): 643-53, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17216278

RESUMO

AIMS/HYPOTHESIS: Hyperglycaemia, one of the main features of diabetes, results in non-enzymatic glycation of plasma proteins, including apolipoprotein A-I (apoA-I), the most abundant apolipoprotein in HDL. The aim of this study was to determine how glycation affects the structure of apoA-I and its ability to activate lecithin:cholesterol acyltransferase (LCAT), a key enzyme in reverse cholesterol transport. MATERIALS AND METHODS: Discoidal reconstituted HDL (rHDL) containing phosphatidylcholine and apoA-I ([A-I]rHDL) were prepared by the cholate dialysis method and glycated by incubation with methylglyoxal. Glycation of apoA-I was quantified as the reduction in detectable arginine, lysine and tryptophan residues. Methylglyoxal-AGE adduct formation in apoA-I was assessed by immunoblotting. (A-I)rHDL size and surface charge were determined by non-denaturing gradient gel electrophoresis and agarose gel electrophoresis, respectively. The kinetics of the LCAT reaction was investigated by incubating varying concentrations of discoidal (A-I)rHDL with a constant amount of purified enzyme. The conformation of apoA-I was assessed by surface plasmon resonance. RESULTS: Methylglyoxal-mediated modifications of the arginine, lysine and tryptophan residues in lipid-free and lipid-associated apoA-I were time- and concentration-dependent. These modifications altered the conformation of apoA-I in regions critical for LCAT activation and lipid binding. They also decreased (A-I)rHDL size and surface charge. The rate of LCAT-mediated cholesterol esterification in (A-I)rHDL varied according to the level of apoA-I glycation and progressively decreased as the extent of apoA-I glycation increased. CONCLUSIONS/INTERPRETATION: It is concluded that glycation of apoA-I may adversely affect reverse cholesterol transport in subjects with diabetes.


Assuntos
Apolipoproteína A-I/química , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Apolipoproteína A-I/sangue , Apolipoproteína A-I/fisiologia , Ativação Enzimática , Glicosilação , Humanos , Hiperglicemia/sangue , Hiperglicemia/enzimologia , Lipoproteínas HDL/sangue , Lipoproteínas HDL/isolamento & purificação , Aldeído Pirúvico/farmacologia
6.
Diabetologia ; 49(4): 775-83, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16465512

RESUMO

AIMS/HYPOTHESIS: Previous studies have shown that glycation of LDL by methylglyoxal and glycolaldehyde, in the absence of significant oxidation, results in lipid accumulation in macrophage cells. Such 'foam cells' are a hallmark of atherosclerosis. In this study we examined whether LDL glycation by methylglyoxal or glycolaldehyde, and subsequent lipid loading of cells, can be inhibited by agents that scavenge reactive carbonyls. Such compounds may have therapeutic potential in diabetes-associated atherosclerosis. MATERIALS AND METHODS: LDL was glycated with methylglyoxal or glycolaldehyde in the absence or presence of metformin, aminoguanidine, Girard's reagents P and T, or hydralazine. LDL modification was characterised by changes in mobility (agarose gel electrophoresis), cross-linking (SDS-PAGE) and loss of amino acid residues (HPLC). Accumulation of cholesterol and cholesteryl esters in murine macrophages was assessed by HPLC. RESULTS: Inhibition of LDL glycation was detected with equimolar or greater concentrations of the scavengers over the reactive carbonyl. This inhibition was structure-dependent and accompanied by a modulation of cholesterol and cholesteryl ester accumulation. With aminoguanidine, Girard's reagent P and hydralazine, cellular sterol levels returned to control levels despite incomplete inhibition of LDL modification. CONCLUSIONS/INTERPRETATION: Inhibition of LDL glycation by interception of the reactive aldehydes that induce LDL modification prevents lipid loading and model foam cell formation in murine macrophage cells. Carbonyl-scavenging reagents, such as hydrazines, may therefore help inhibit LDL glycation in vivo and prevent diabetes-induced atherosclerosis.


Assuntos
Acetaldeído/análogos & derivados , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Hidrazinas/química , Hidrazinas/farmacologia , Lipoproteínas LDL/metabolismo , Acetaldeído/metabolismo , Animais , Linhagem Celular , Glicosilação/efeitos dos fármacos , Camundongos , Modelos Biológicos , Estrutura Molecular
7.
Diabetologia ; 48(2): 361-9, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15660260

RESUMO

AIMS/HYPOTHESIS: Previous studies have implicated the glycoxidative modification of low-density lipoprotein (LDL) by glucose and aldehydes (apparently comprising both glycation and oxidation), as a causative factor in the elevated levels of atherosclerosis observed in diabetic patients. Such LDL modification can result in unregulated cellular accumulation of lipids. In previous studies we have characterized the formation of glycated, but nonoxidized, LDL by glucose and aldehydes; in this study we examine whether glycation of LDL, in the absence of oxidation, gives rise to lipid accumulation in arterial wall cell types. METHODS: Glycated LDLs were incubated with macrophage, smooth muscle, or endothelial cells. Lipid loading was assessed by HPLC analysis of cholesterol and individual esters. Oxidation was assessed by cholesterol ester loss and 7-ketocholesterol formation. Cell viability was assessed by lactate dehydrogenase release and cell protein levels. RESULTS: Glycation of LDL by glycolaldehyde and methylglyoxal, but not glucose (in either the presence or absence of copper ions), resulted in cholesterol and cholesterol ester accumulation in macrophage cells, but not smooth muscle or endothelial cells. The extent of lipid accumulation depends on the degree of glycation, with increasing aldehyde concentration or incubation time, giving rise to greater extents of particle modification and lipid accumulation. Modification of lysine residues appears to be a key determinant of cellular uptake. CONCLUSIONS/INTERPRETATION: These results are consistent with LDL glycation, in the absence of oxidation, being sufficient for rapid lipid accumulation by macrophage cells. Aldehyde-mediated "carbonyl-stress" may therefore facilitate the formation of lipid-laden (foam) cells in the artery wall.


Assuntos
Acetaldeído/análogos & derivados , Acetaldeído/química , Lipoproteínas LDL/síntese química , Lipoproteínas/sangue , Aldeído Pirúvico/química , Animais , Produtos Finais de Glicação Avançada , Humanos , Indicadores e Reagentes , Ratos
8.
Arch Biochem Biophys ; 395(2): 137-45, 2001 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-11697850

RESUMO

Activated leukocytes generate the potent oxidants HOCl and HOBr via the formation of H(2)O(2) and the release of peroxidase enzymes (myeloperoxidase, eosinophil peroxidase). HOCl and HOBr are potent microbiocidal agents, but excessive or misplaced production can cause tissue damage and cell lysis. In this study it is shown that HOBr induces red blood cell lysis at approximately 10-fold lower concentrations than HOCl, whereas with monocyte (THP1) and macrophage (J774) cells HOCl and HOBr induce lysis at similar concentrations. The role of radical formation during lysis has been investigated by EPR spin trapping, and it is shown that reaction of both oxidants with each cell type generates cell-derived radicals. Red blood cells exposed to nonlytic doses of HOCl generate novel nitrogen-centered radicals whose formation is GSH dependent. In contrast, HOBr gives rise to nitrogen-centered, membrane-derived protein radicals. With lytic doses of either oxidant, protein (probably hemoglobin)-derived, nitrogen-centered radicals are observed. Unlike the red blood cells, treatment of monocytes and macrophages with HOCl gives significant radical formation only under conditions where cell lysis occurs concurrently. These radicals are nitrogen-centered, cell-protein-derived species and have parameters identical to those detected with red blood cells and HOBr. Exposure of these cells to HOBr did not give detectable radicals. Overall these experiments demonstrate that HOCl and HOBr react with different selectivity with cellular targets, and that this can result in radical formation. This radical generation can precede, and may play a role in, cell lysis.


Assuntos
Bromatos/metabolismo , Radicais Livres , Ácido Hipocloroso/metabolismo , Linhagem Celular , Espectroscopia de Ressonância de Spin Eletrônica , Eritrócitos/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Nitrogênio/química , Nitrogênio/farmacologia , Oxigênio/metabolismo , Ligação Proteica , Detecção de Spin , Fatores de Tempo
9.
J Cell Biol ; 153(2): 243-9, 2001 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-11309406

RESUMO

Desmogleins are desmosomal cadherins that mediate cell-cell adhesion. In stratified squamous epithelia there are two major isoforms of desmoglein, 1 and 3, with different distributions in epidermis and mucous membrane. Since either desmoglein isoform alone can mediate adhesion, the reason for their differential distribution is not known. To address this issue, we engineered transgenic mice with desmoglein 3 under the control of the involucrin promoter. These mice expressed desmoglein 3 with the same distribution in epidermis as found in normal oral mucous membranes, while expression of other major differentiation molecules was unchanged. Although the nucleated epidermis appeared normal, the epidermal stratum corneum was abnormal with gross scaling, and a lamellar histology resembling that of normal mucous membrane. The mice died shortly after birth with severe dehydration, suggesting excessive transepidermal water loss, which was confirmed by in vitro and in vivo measurement. Ultrastructure of the stratum corneum showed premature loss of cohesion of corneocytes. This dysadhesion of corneocytes and its contribution to increased transepidermal water loss was confirmed by tape stripping. These data demonstrate that differential expression of desmoglein isoforms affects the major function of epidermis, the permeability barrier, by altering the structure of the stratum corneum.


Assuntos
Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Epiderme/ultraestrutura , Perda Insensível de Água/fisiologia , Animais , Caderinas/genética , Moléculas de Adesão Celular/genética , Desmogleína 3 , Desmossomos/metabolismo , Desmossomos/ultraestrutura , Epiderme/metabolismo , Proteínas Filagrinas , Immunoblotting , Proteínas de Filamentos Intermediários/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Mucosa Bucal/anatomia & histologia , Mucosa Bucal/metabolismo , Oligopeptídeos , Peptídeos/genética , Peptídeos/metabolismo , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA