Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 129: 25-34, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30189264

RESUMO

The infiltration of activated leukocytes, including macrophages, at sites of inflammation and the formation and presence of hypochlorous acid (HOCl) are interlinked hallmarks of many debilitating disease processes, including atherosclerosis, arthritis, neurological and renal disease, diabetes and obesity. The production of extracellular traps by activated leukocytes in response to a range of inflammatory stimuli is increasingly recognised as an important process within a range of disease settings. We show that exposure of human monocyte-derived macrophages to pathophysiological levels of HOCl results in the dose-dependent extrusion of DNA and histones into the cellular supernatant, consistent with extracellular trap formation. Concurrent with, but independent of these findings, macrophage exposure to HOCl also resulted in an immediate and sustained cytosolic accumulation of Ca2+, culminating in the increased production of cytokines and chemokines. Polarisation of the macrophages prior to HOCl exposure revealed a greater propensity for inflammatory M1 macrophages to produce extracellular traps, whereas alternatively-activated M2 macrophages were less susceptible to HOCl insult. M1 macrophages also produced extracellular traps on exposure to phorbol myristate acetate (PMA), interleukin-8 (IL-8) and tumour necrosis factor α (TNFα). Taken together, these data indicate a potential role for macrophages in mediating extracellular trap formation, which may be relevant in pathological conditions characterised by chronic inflammation or excessive HOCl formation.


Assuntos
Armadilhas Extracelulares/efeitos dos fármacos , Ácido Hipocloroso/farmacologia , Interleucina-8/farmacologia , Macrófagos/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Cálcio/metabolismo , Cátions Bivalentes , Diferenciação Celular , DNA/metabolismo , Espaço Extracelular/química , Armadilhas Extracelulares/metabolismo , Expressão Gênica , Histonas/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Cultura Primária de Células , Proteína-Arginina Desiminase do Tipo 2 , Desiminases de Arginina em Proteínas/antagonistas & inibidores , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
2.
Am J Pathol ; 187(12): 2858-2875, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28935570

RESUMO

Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a master regulator of the antioxidant response. However, studies in models of Friedreich ataxia, a neurodegenerative and cardiodegenerative disease associated with oxidative stress, reported decreased Nrf2 expression attributable to unknown mechanisms. Using a mouse conditional frataxin knockout (KO) model in the heart and skeletal muscle, we examined the Nrf2 pathway in these tissues. Frataxin KO results in fatal cardiomyopathy, whereas skeletal muscle was asymptomatic. In the KO heart, protein oxidation and a decreased glutathione/oxidized glutathione ratio were observed, but the opposite was found in skeletal muscle. Decreased total and nuclear Nrf2 and increased levels of its inhibitor, Kelch-like ECH-associated protein 1, were evident in the KO heart, but not in skeletal muscle. Moreover, a mechanism involving activation of the nuclear Nrf2 export/degradation machinery via glycogen synthase kinase-3ß (Gsk3ß) signaling was demonstrated in the KO heart. This process involved the following: i) increased Gsk3ß activation, ii) ß-transducin repeat containing E3 ubiquitin protein ligase nuclear accumulation, and iii) Fyn phosphorylation. A corresponding decrease in Nrf2-DNA-binding activity and a general decrease in Nrf2-target mRNA were observed in KO hearts. Paradoxically, protein levels of some Nrf2 antioxidant targets were significantly increased in KO mice. Collectively, cardiac frataxin deficiency reduces Nrf2 levels via two potential mechanisms: increased levels of cytosolic Kelch-like ECH-associated protein 1 and activation of Gsk3ß signaling, which decreases nuclear Nrf2. These findings are in contrast to the frataxin-deficient skeletal muscle, where Nrf2 was not decreased.


Assuntos
Ataxia de Friedreich/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Modelos Animais de Doenças , Ataxia de Friedreich/genética , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/fisiologia , Regulação para Cima , Frataxina
3.
PLoS One ; 11(12): e0168844, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27997605

RESUMO

Low-density lipoprotein (LDL) is the major source of lipid within atherosclerotic lesions. Myeloperoxidase (MPO) is present in lesions and forms the reactive oxidants hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN). These oxidants modify LDL and have been strongly linked with the development of atherosclerosis. In this study, we examined the effect of HOCl, HOSCN and LDL pre-treated with these oxidants on the function of lysosomal enzymes responsible for protein catabolism and lipid hydrolysis in murine macrophage-like J774A.1 cells. In each case, the cells were exposed to HOCl or HOSCN or LDL pre-treated with these oxidants. Lysosomal cathepsin (B, L and D) and acid lipase activities were quantified, with cathepsin and LAMP-1 protein levels determined by Western blotting. Exposure of J774A.1 cells to HOCl or HOSCN resulted in a significant decrease in the activity of the Cys-dependent cathepsins B and L, but not the Asp-dependent cathepsin D. Cathepsins B and L were also inhibited in macrophages exposed to HOSCN-modified, and to a lesser extent, HOCl-modified LDL. No change was seen in cathepsin D activity or the expression of the cathepsin proteins or lysosomal marker protein LAMP-1. The activity of lysosomal acid lipase was also decreased on treatment of macrophages with each modified LDL. Taken together, these results suggest that HOCl, HOSCN and LDL modified by these oxidants could contribute to lysosomal dysfunction and thus perturb the cellular processing of LDL, which could be important during the development of atherosclerosis.


Assuntos
Aterosclerose/enzimologia , Catepsinas/metabolismo , Lipase/metabolismo , Lisossomos/enzimologia , Macrófagos/enzimologia , Peroxidase/metabolismo , Animais , Aterosclerose/patologia , Linhagem Celular , Humanos , Ácido Hipocloroso/metabolismo , Lipoproteínas LDL/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/patologia , Macrófagos/patologia , Camundongos , Tiocianatos/metabolismo
4.
World J Gastroenterol ; 22(35): 8026-40, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27672297

RESUMO

AIM: To determine if manipulation of dietary advanced glycation end product (AGE), intake affects non-alcoholic fatty liver disease (NAFLD) progression and whether these effects are mediated via RAGE. METHODS: Male C57Bl6 mice were fed a high fat, high fructose, high cholesterol (HFHC) diet for 33 wk and compared with animals on normal chow. A third group were given a HFHC diet that was high in AGEs. Another group was given a HFHC diet that was marinated in vinegar to prevent the formation of AGEs. In a second experiment, RAGE KO animals were fed a HFHC diet or a high AGE HFHC diet and compared with wildtype controls. Hepatic biochemistry, histology, picrosirius red morphometry and hepatic mRNA were determined. RESULTS: Long-term consumption of the HFHC diet generated significant steatohepatitis and fibrosis after 33 wk. In this model, hepatic 4-hydroxynonenal content (a marker of chronic oxidative stress), hepatocyte ballooning, picrosirius red staining, α-smooth muscle actin and collagen type 1A gene expression were all significantly increased. Increasing the AGE content of the HFHC diet by baking further increased these markers of liver damage, but this was abrogated by pre-marination in acetic acid. In response to the HFHC diet, RAGE(-/-) animals developed NASH of similar severity to RAGE(+/+) animals but were protected from the additional harmful effects of the high AGE containing diet. Studies in isolated Kupffer cells showed that AGEs increase cell proliferation and oxidative stress, providing a likely mechanism through which these compounds contribute to liver injury. CONCLUSION: In the HFHC model of NAFLD, manipulation of dietary AGEs modulates liver injury, inflammation, and liver fibrosis via a RAGE dependent pathway. This suggests that pharmacological and dietary strategies targeting the AGE/RAGE pathway could slow the progression of NAFLD.


Assuntos
Dieta Hiperlipídica , Produtos Finais de Glicação Avançada/administração & dosagem , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Acético , Animais , Colesterol/administração & dosagem , Progressão da Doença , Fígado Gorduroso/metabolismo , Frutose/administração & dosagem , Inflamação/metabolismo , Células de Kupffer/citologia , Fígado/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
5.
Arch Biochem Biophys ; 573: 40-51, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25795019

RESUMO

Atherosclerosis is characterised by the accumulation of lipids within macrophages in the artery wall. Low-density lipoprotein (LDL) is the source of this lipid, owing to the uptake of oxidised LDL by scavenger receptors. Myeloperoxidase (MPO) released by leukocytes during inflammation produces oxidants that are implicated in atherosclerosis. Modification of LDL by the MPO oxidant hypochlorous acid (HOCl), results in extensive lipid accumulation by macrophages. However, the reactivity of the other major MPO oxidant, hypothiocyanous acid (HOSCN) with LDL is poorly characterised, which is significant given that thiocyanate is the favoured substrate for MPO. In this study, we comprehensively compare the reactivity of HOCl and HOSCN with LDL, and show key differences in the profile of oxidative damage observed. HOSCN selectively modifies Cys residues on apolipoprotein B100, and oxidises cholesteryl esters resulting in formation of lipid hydroperoxides, 9-hydroxy-10,12-octadecadienoic acid (9-HODE) and F2-isoprostanes. The modification of LDL by HOSCN results macrophage lipid accumulation, though generally to a lesser extent than HOCl-modified LDL. This suggests that a change in the ratio of HOSCN:HOCl formation by MPO from variations in plasma thiocyanate levels, will influence the nature of LDL oxidation in vivo, and has implications for the progression of atherosclerosis.


Assuntos
Aterosclerose/patologia , Células Espumosas/patologia , Ácido Hipocloroso/metabolismo , Lipoproteínas LDL/metabolismo , Oxidantes/metabolismo , Peroxidase/metabolismo , Tiocianatos/metabolismo , Animais , Apolipoproteína B-100/química , Aterosclerose/metabolismo , Linhagem Celular , Colesterol/biossíntese , Ésteres do Colesterol/biossíntese , Células Espumosas/metabolismo , Humanos , Ácido Hipocloroso/química , Lipoproteínas LDL/química , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Oxidantes/química , Oxirredução , Tiocianatos/química
6.
Atherosclerosis ; 232(2): 403-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24468155

RESUMO

OBJECTIVE: Carnosine has been shown to modulate triglyceride and glycation levels in cell and animal systems. In this study we investigated whether prolonged supplementation with carnosine inhibits atherosclerosis and markers of lesion stability in hyperglycaemic and hyperlipidaemic mice. METHODS: Streptozotocin-induced diabetic apo E(-/-) mice were maintained for 20 weeks, post-induction of diabetes. Half of the animals received carnosine (2g/L) in their drinking water. Diabetes was confirmed by significant increases in blood glucose and glycated haemoglobin, plasma triglyceride and total cholesterol levels, brachiocephalic artery and aortic sinus plaque area; and lower body mass. RESULTS: Prolonged carnosine supplementation resulted in a significant (∼20-fold) increase in plasma carnosine levels, and a significant (∼23%) lowering of triglyceride levels in the carnosine-supplemented groups regardless of glycaemic status. Supplementation did not affect glycaemic status, blood cholesterol levels or loss of body mass. In the diabetic mice, carnosine supplementation did not diminish measured plaque area, but reduced the area of plaque occupied by extracellular lipid (∼60%) and increased both macrophage numbers (∼70%) and plaque collagen content (∼50%). The area occupied by α-actin-positive smooth muscle cells was not significantly increased. CONCLUSIONS: These data indicate that in a well-established model of diabetes-associated atherosclerosis, prolonged carnosine supplementation enhances plasma levels, and has novel and significant effects on atherosclerotic lesion lipid, collagen and macrophage levels. These data are consistent with greater lesion stability, a key goal in treatment of existing cardiovascular disease. Carnosine supplementation may therefore be of benefit in lowering triglyceride levels and suppressing plaque instability in diabetes-associated atherosclerosis.


Assuntos
Carnosina/uso terapêutico , Diabetes Mellitus Experimental/sangue , Placa Aterosclerótica/sangue , Placa Aterosclerótica/terapia , Triglicerídeos/sangue , Animais , Aorta/patologia , Apolipoproteínas E/genética , Glicemia/metabolismo , Tronco Braquiocefálico/patologia , Colesterol/metabolismo , Suplementos Nutricionais , Hemoglobinas/metabolismo , Hipertrigliceridemia/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise Multivariada
7.
PLoS One ; 8(5): e65430, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23741493

RESUMO

Increased protein glycation in people with diabetes may promote atherosclerosis. This study examined the effects of non-enzymatic glycation on the association of lipid-free apolipoproteinA-I (apoA-I) with phospholipid, and cholesterol efflux from lipid-loaded macrophages to lipid-free and lipid-associated apoA-I. Glycation of lipid-free apoA-I by methylglyoxal and glycolaldehyde resulted in Arg, Lys and Trp loss, advanced glycation end-product formation and protein cross-linking. The association of apoA-I glycated by glucose, methylglyoxal or glycolaldehyde with phospholipid multilamellar vesicles was impaired in a glycating agent dose-dependent manner, with exposure of apoA-I to both 30 mM glucose (42% decrease in kslow) and 3 mM glycolaldehyde (50% decrease in kfast, 60% decrease in kslow) resulting is significantly reduced affinity. Cholesterol efflux to control or glycated lipid-free apoA-I, or discoidal reconstituted HDL containing glycated apoA-I (drHDL), was examined using cholesterol-loaded murine (J774A.1) macrophages treated to increase expression of ATP binding cassette transporters A1 (ABCA1) or G1 (ABCG1). Cholesterol efflux from J774A.1 macrophages to glycated lipid-free apoA-I via ABCA1 or glycated drHDL via an ABCG1-dependent mechanism was unaltered, as was efflux to minimally modified apoA-I from people with Type 1 diabetes, or controls. Changes to protein structure and function were prevented by the reactive carbonyl scavenger aminoguanidine. Overall these studies demonstrate that glycation of lipid-free apoA-I, particularly late glycation, modifies its structure, its capacity to bind phospholipids and but not ABCA1- or ABCG1-dependent cholesterol efflux from macrophages.


Assuntos
Aldeídos/farmacologia , Apolipoproteína A-I/metabolismo , Colesterol/metabolismo , Glucose/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fosfolipídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Animais , Transporte Biológico , Estudos de Casos e Controles , Linhagem Celular , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Glicosilação/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos , Lipoproteínas HDL/metabolismo , Masculino , Camundongos , Adulto Jovem
8.
Front Physiol ; 4: 38, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23483845

RESUMO

Post-translational modification of proteins in diabetes, including formation of advanced glycation end products (AGEs) are believed to contribute to vascular dysfunction and disease. Impaired function of the endothelium is an early indicator of vascular dysfunction in diabetes and as many endothelial cell processes are dependent upon intracellular [Ca(2+)] and Ca(2+) signaling, the aim of this study was to examine the acute effects of AGEs on Ca(2+) signaling in bovine aortic endothelial cells (BAEC). Ca(2+) signaling was studied using the fluorescent indicator dye Fura-2-AM. AGEs were generated by incubating bovine serum albumin with 0-250 mM glucose or glucose-6-phosphate for 0-120 days at 37°C. Under all conditions, the main AGE species generated was carboxymethyl lysine (CML) as assayed using both gas-liquid chromatograph-mass spectroscopy and high-performance liquid chromatography. In Ca(2+)-replete solution, exposure of BAEC to AGEs for 5 min caused an elevation in basal [Ca(2+)] and attenuated the increase in intracellular [Ca(2+)] caused by ATP (100 µM). In the absence of extracellular Ca(2+), exposure of BAEC to AGEs for 5 min caused an elevation in basal [Ca(2+)] and attenuated subsequent intracellular Ca(2+) release caused by ATP, thapsigargin (0.1 µM), and ionomycin (3 µM), but AGEs did not affect extracellular Ca(2+) entry induced by the re-addition of Ca(2+) to the bathing solution in the presence of any of these agents. The anti-oxidant α-lipoic acid (2 µM) and NAD(P)H oxidase inhibitors apocynin (500 µM) and diphenyleneiodonium (1 µM) abolished these effects of AGEs on BAECs, as did the IP3 receptor antagonist xestospongin C (1 µM). In summary, AGEs caused an acute depletion of Ca(2+) from the intracellular store in BAECs, such that the Ca(2+) signal stimulated by the subsequent application other agents acting upon this store is reduced. The mechanism may involve generation of reactive oxygen species from NAD(P)H oxidase and possible activation of the IP3 receptor.

9.
Biochem J ; 449(2): 531-42, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23088652

RESUMO

Oxidative modification of HDLs (high-density lipoproteins) by MPO (myeloperoxidase) compromises its anti-atherogenic properties, which may contribute to the development of atherosclerosis. Although it has been established that HOCl (hypochlorous acid) produced by MPO targets apoA-I (apolipoprotein A-I), the major apolipoprotein of HDLs, the role of the other major oxidant generated by MPO, HOSCN (hypothiocyanous acid), in the generation of dysfunctional HDLs has not been examined. In the present study, we characterize the structural and functional modifications of lipid-free apoA-I and rHDL (reconstituted discoidal HDL) containing apoA-I complexed with phospholipid, induced by HOSCN and its decomposition product, OCN- (cyanate). Treatment of apoA-I with HOSCN resulted in the oxidation of tryptophan residues, whereas OCN- induced carbamylation of lysine residues to yield homocitrulline. Tryptophan residues were more readily oxidized on apoA-I contained in rHDLs. Exposure of lipid-free apoA-I to HOSCN and OCN- significantly reduced the extent of cholesterol efflux from cholesterol-loaded macrophages when compared with unmodified apoA-I. In contrast, HOSCN did not affect the anti-inflammatory properties of rHDL. The ability of HOSCN to impair apoA-I-mediated cholesterol efflux may contribute to the development of atherosclerosis, particularly in smokers who have high plasma levels of SCN- (thiocyanate).


Assuntos
Apolipoproteína A-I/metabolismo , Lipoproteínas HDL/metabolismo , Oxidantes/metabolismo , Peroxidase/metabolismo , Sequência de Aminoácidos , Apolipoproteína A-I/química , Apolipoproteína A-I/farmacologia , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Colesterol/metabolismo , Selectina E/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Feminino , Citometria de Fluxo , Humanos , Ácido Hipocloroso/metabolismo , Ácido Hipocloroso/farmacologia , Molécula 1 de Adesão Intercelular/metabolismo , Lipoproteínas HDL/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Dados de Sequência Molecular , Oxirredução/efeitos dos fármacos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Tiocianatos/metabolismo , Tiocianatos/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
10.
Exp Diabetes Res ; 2011: 851280, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21904540

RESUMO

During atherosclerosis monocyte-derived macrophages accumulate cholesteryl esters from low-density lipoproteins (LDLs) via lectin-like oxidised LDL receptor-1 (LOX-1) and class AI and AII (SR-AI, SR-AII) and class B (SR-BI, CD36) scavenger receptors. Here we examined the hypothesis that hyperglycaemia may modulate receptor expression and hence lipid accumulation in macrophages. Human monocytes were matured into macrophages in 30 versus 5 mM glucose and receptor expression and lipid accumulation quantified. High glucose elevated LOX1 mRNA, but decreased SR-AI, SR-BI, LDLR, and CD36 mRNA. SR-BI and CD36 protein levels were decreased. Normo- and hyperglycaemic cells accumulated cholesteryl esters from modified LDL to a greater extent than control LDL, but total and individual cholesteryl ester accumulation was not affected by glucose levels. It is concluded that, whilst macrophage scavenger receptor mRNA and protein levels can be modulated by high glucose, these are not key factors in lipid accumulation by human macrophages under the conditions examined.


Assuntos
Glucose/administração & dosagem , Lipoproteínas LDL/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Aterosclerose/etiologia , Aterosclerose/genética , Aterosclerose/metabolismo , Sequência de Bases , Antígenos CD36/genética , Antígenos CD36/metabolismo , Diferenciação Celular , Células Cultivadas , Ésteres do Colesterol/metabolismo , Primers do DNA/genética , Glucose/metabolismo , Produtos Finais de Glicação Avançada , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores Depuradores Classe A/genética , Receptores Depuradores Classe A/metabolismo , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo
11.
J Agric Food Chem ; 59(14): 7939-47, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21696221

RESUMO

Riboflavin-mediated photo-oxidative damage to protein Tyr residues has been examined to determine whether protein structure influences competing protein oxidation pathways in single proteins and protein mixtures. EPR studies resulted in the detection of Tyr-derived o-semiquione radicals, with this species suggested to arise from oxidation of 3,4-dihydroxyphenylalanine (DOPA). The yield of this radical was lower in samples containing ß-casein than in samples containing only globular proteins. Consistent with this observation, the yield of DOPA detected on ß-casein was lower than that on two globular proteins, BSA and ß-lactoglobulin. In contrast, samples with ß-casein gave higher yields of dityrosine than samples containing BSA and ß-lactoglobulin. These results indicate that the flexible structure of ß-casein favors radical-radical termination of tyrosyl radicals to give dityrosine, whereas the less flexible structure of globular proteins decreases the propensity for tyrosyl radicals to dimerize, with this resulting in higher yields of DOPA and its secondary radical.


Assuntos
Di-Hidroxifenilalanina/química , Radicais Livres/química , Proteínas do Leite/química , Oxirredução/efeitos da radiação , Riboflavina/química , Soroalbumina Bovina/química , Tirosina/análogos & derivados , Motivos de Aminoácidos , Animais , Bovinos , Lactoglobulinas/química , Conformação Proteica/efeitos da radiação , Tirosina/química
12.
Arterioscler Thromb Vasc Biol ; 30(4): 766-72, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20110571

RESUMO

OBJECTIVE: The goal of this study was to investigate the effects of nonenzymatic glycation on the antiinflammatory properties of apolipoprotein (apo) A-I. METHODS AND RESULTS: Rabbits were infused with saline, lipid-free apoA-I from normal subjects (apoA-I(N)), lipid-free apoA-I nonenzymatically glycated by incubation with methylglyoxal (apoA-I(Glyc in vitro)), nonenzymatically glycated lipid-free apoA-I from subjects with diabetes (apoA-I(Glyc in vivo)), discoidal reconstituted high-density lipoproteins (rHDL) containing phosphatidylcholine and apoA-I(N), (A-I(N))rHDL, or apoA-I(Glyc in vitro), (A-I(Glyc in vitro))rHDL. At 24 hours postinfusion, acute vascular inflammation was induced by inserting a nonocclusive, periarterial carotid collar. The animals were euthanized 24 hours after the insertion of the collar. The collars caused intima/media neutrophil infiltration and increased endothelial expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). ApoA-I(N) infusion decreased neutrophil infiltration and VCAM-1 and ICAM-1 expression by 89%, 90%, and 66%, respectively. The apoA-I(Glyc in vitro) infusion decreased neutrophil infiltration by 53% but did not reduce VCAM-1 or ICAM-1 expression. ApoA-I(Glyc in vivo) did not inhibit neutrophil infiltration or adhesion molecule expression. (A-I(Glyc in vitro))rHDL also inhibited vascular inflammation less effectively than (A-I(N))rHDL. The reduced antiinflammatory properties of nonenzymatically glycated apoA-I were attributed to a reduced ability to inhibit nuclear factor-kappaB activation and reactive oxygen species formation. CONCLUSIONS: Nonenzymatic glycation impairs the antiinflammatory properties of apoA-I.


Assuntos
Anti-Inflamatórios/metabolismo , Apolipoproteína A-I/metabolismo , Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/prevenção & controle , Inflamação/prevenção & controle , Processamento de Proteína Pós-Traducional , Aldeído Pirúvico/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Anti-Inflamatórios/administração & dosagem , Apolipoproteína A-I/administração & dosagem , Artérias Carótidas/imunologia , Lesões das Artérias Carótidas/imunologia , Lesões das Artérias Carótidas/metabolismo , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Angiopatias Diabéticas/imunologia , Angiopatias Diabéticas/metabolismo , Modelos Animais de Doenças , Glicosilação , Humanos , Proteínas I-kappa B/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Infusões Parenterais , Molécula 1 de Adesão Intercelular/metabolismo , Lipoproteínas HDL/metabolismo , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Infiltração de Neutrófilos , Fosfatidilcolinas/metabolismo , Fosforilação , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Molécula 1 de Adesão de Célula Vascular/metabolismo
13.
FEBS J ; 274(6): 1530-41, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17480204

RESUMO

Nonenzymatic covalent binding (glycation) of reactive aldehydes (from glucose or metabolic processes) to low-density lipoproteins has been previously shown to result in lipid accumulation in a murine macrophage cell line. The formation of such lipid-laden cells is a hallmark of atherosclerosis. In this study, we characterize lipid accumulation in primary human monocyte-derived macrophages, which are cells of immediate relevance to human atherosclerosis, on exposure to low-density lipoprotein glycated using methylglyoxal or glycolaldehyde. The time course of cellular uptake of low-density lipoprotein-derived lipids and protein has been characterized, together with the subsequent turnover of the modified apolipoprotein B-100 (apoB) protein. Cholesterol and cholesteryl ester accumulation occurs within 24 h of exposure to glycated low-density lipoprotein, and increases in a time-dependent manner. Higher cellular cholesteryl ester levels were detected with glycolaldehyde-modified low-density lipoprotein than with methylglyoxal-modified low-density lipoprotein. Uptake was significantly decreased by fucoidin (an inhibitor of scavenger receptor SR-A) and a mAb to CD36. Human monocyte-derived macrophages endocytosed and degraded significantly more (125)I-labeled apoB from glycolaldehyde-modified than from methylglyoxal-modified, or control, low-density lipoprotein. Differences in the endocytic and degradation rates resulted in net intracellular accumulation of modified apoB from glycolaldehyde-modified low-density lipoprotein. Accumulation of lipid therefore parallels increased endocytosis and, to a lesser extent, degradation of apoB in human macrophages exposed to glycolaldehyde-modified low-density lipoprotein. This accumulation of cholesteryl esters and modified protein from glycated low-density lipoprotein may contribute to cellular dysfunction and the increased atherosclerosis observed in people with diabetes, and other pathologies linked to exposure to reactive carbonyls.


Assuntos
Apolipoproteína B-100/metabolismo , Ésteres do Colesterol/metabolismo , Glucose/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Humanos , Macrófagos/citologia , Monócitos/citologia
14.
Eur J Biochem ; 270(17): 3572-82, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12919321

RESUMO

Patients with diabetes mellitus suffer from an increased incidence of complications including cardiovascular disease and cataracts; the mechanisms responsible for this are not fully understood. One characteristic of such complications is an accumulation of advanced glycation end-products formed by the adduction of glucose or species derived from glucose, such as low-molecular mass aldehydes, to proteins. These reactions can be nonoxidative (glycation) or oxidative (glycoxidation) and result in the conversion of low-density lipoproteins (LDL) to a form that is recognized by the scavenger receptors of macrophages. This results in the accumulation of cholesterol and cholesteryl esters within macrophages and the formation of foam cells, a hallmark of atherosclerosis. The nature of the LDL modifications required for cellular recognition and unregulated uptake are poorly understood. We have therefore examined the nature, time course, and extent of LDL modifications induced by glucose and two aldehydes, methylglyoxal and glycolaldehyde. It has been shown that these agents modify Arg, Lys and Trp residues of the apoB protein of LDL, with the extent of modification induced by the two aldehydes being more rapid than with glucose. These processes are rapid and unaffected by low concentrations of copper ions. In contrast, lipid and protein oxidation are slow processes and occur to a limited extent in the absence of added copper ions. No evidence was obtained for the stimulation of lipid or protein oxidation by glucose or methylglyoxal in the presence of copper ions, whereas glycolaldehyde stimulated such reactions to a modest extent. These results suggest that the earliest significant events in this system are metal ion-independent glycation (modification) of the protein component of LDL, whilst oxidative events (glycoxidation or direct oxidation of lipid or proteins) only occur to any significant extent at later time points. This 'carbonyl-stress' may facilitate the formation of foam cells and the vascular complications of diabetes.


Assuntos
Aldeídos/farmacologia , Glucose/farmacologia , Lipoproteínas LDL/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apolipoproteínas B/química , Apolipoproteínas B/metabolismo , Arteriosclerose/metabolismo , Cobre/química , Cobre/farmacologia , Glucose/metabolismo , Glicosilação , Humanos , Lipoproteínas LDL/química , Peso Molecular , Oxirredução , Aldeído Pirúvico/química , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/farmacologia , Fatores de Tempo , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...