Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 234: 105806, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33819675

RESUMO

We studied the temperature dependence of accumulation and elimination of two polychlorinated biphenyls (PCBs; PCB-70 and PCB-126) and a commercial mixture of congeners of polybrominated diphenyl ethers (PBDEs; DE-71™)) in Northern leopard frog (Lithobates pipiens) tadpoles. We reared tadpoles at 18, 23, or 27 °C for 5.3 or up to 13.6 weeks (longer at cooler temperature where development is slower) on diets containing the toxicants, each at several different toxicant concentrations, and compared tissue concentrations as a function of food concentration and rearing temperature. Following > 1 month of accumulation, tissue concentrations of all three toxicants in exposed tadpoles were linearly related to dietary concentrations as expected for first order kinetics, with no significant effect of rearing temperature.We also raised free-swimming L. pipiens tadpoles for 14 days on foods containing either toxicant at 18 or 27 °C during an accumulation phase, and then during depuration (declining toxicant) phase of 14 days we provided food without toxicants and measured the decline of toxicants in tadpole tissue. All the congeners were eliminated faster at warmer rearing temperature, as expected. Using Arrhenius' equation, we calculated that the apparent activation energy for elimination of both PCB congeners by tadpoles was 1.21 eV (95% confidence interval 0.6-1.8 eV). We discuss how this value was within the range of estimates for metabolic reactions generally (range 0.2 - 1.2 eV), which might include metabolic pathways for biotransformation and elimination of PCBs. Furthermore, we discuss how the lack of an effect of rearing temperature on tadpole near-steady-state tissue residue levels suggests that faster elimination at the warmer temperature was balanced by faster uptake, which is plausible considering the similar temperature sensitivities (i.e., activation energies) of all these processes. Although interactions between toxicants and temperature can be complex and likely toxicant-dependent, it is plausible that patterns observed in tadpoles might apply to other aquatic organisms. Published data on depuration in 11 fish species eliminating 8 other organic toxicants indicated that they also had similar apparent activation energy for elimination (0.82 ± 0.12 eV; 95% confidence interval 0.56 - 1.08 eV), even though none of those studied toxicants were PCBs or PBDEs. Additional research on toxicant-temperature interactions can help improve our ability to predict toxicant bioaccumulation in warming climate scenarios.


Assuntos
Éteres Difenil Halogenados/metabolismo , Bifenilos Policlorados/metabolismo , Rana pipiens/crescimento & desenvolvimento , Animais , Éteres Difenil Halogenados/química , Éteres Difenil Halogenados/toxicidade , Larva/química , Larva/efeitos dos fármacos , Larva/metabolismo , Bifenilos Policlorados/química , Bifenilos Policlorados/toxicidade , Rana pipiens/metabolismo , Temperatura , Toxicocinética , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
2.
Environ Toxicol Chem ; 36(1): 120-127, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27228472

RESUMO

Amphibian populations have been declining, and climate change and exposure to environmental contaminants are thought to be involved. Higher water temperature accelerates larval development; however, its combined effects with contaminants and their influence on hormones during metamorphosis are poorly understood. The authors investigated changes in whole-body triiodothyronine (T3) and corticosterone concentrations in developing leopard frogs reared at 23 °C and 28 °C on diets with 0 ng g-1 , 6 ng g-1 , and 37 ng g-1 of a technical mixture of polybrominated diphenyl ethers (PBDE; DE-71) from 10 d to 44 d (premetamorphosis to late climax; Gosner Stages 28 to 46). Unlike controls, PBDE-exposed tadpoles (6 ng g-1 ) reared at 23 °C failed to show any increase in T3 concentrations throughout metamorphosis, and exposed tadpoles reared at 28 °C showed a lower peak at climax compared to controls. Corticosterone levels progressively increased throughout metamorphosis, but the levels were higher in PBDE-exposed tadpoles compared to controls at both temperatures. At the warmer temperature, corticosterone increase occurred earlier (at early climax) in controls and exposed tadpoles compared to tadpoles reared at the cooler temperature (late climax), coinciding with the faster development observed at 28 °C. Tadpoles reared at 28 °C were longer and developed faster than tadpoles reared at 23 °C. At both temperatures, PBDE exposure decreased T3 and increased corticosterone concentrations, which can potentially impair developing tadpoles. Environ Toxicol Chem 2017;36:120-127. © 2016 SETAC.


Assuntos
Corticosterona/metabolismo , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Éteres Difenil Halogenados/toxicidade , Larva/efeitos dos fármacos , Temperatura , Tri-Iodotironina/metabolismo , Animais , Mudança Climática , Larva/metabolismo , Metamorfose Biológica/efeitos dos fármacos , Rana pipiens
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...