Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684175

RESUMO

Heat stress compromises wheat (Triticum aestivium) resistance to Hessian fly (HF, Mayetiola destructor (Say)). This study aimed to investigate the impact of heat stress on transcript expression of wheat genes associated with resistance to HF infestation under normal and heat-stressed conditions. To this end, 'Molly', a wheat cultivar containing the resistance gene H13, was subjected to HF infestation, heat stress, and the combination of HF infestation and heat stress. Our RNA-Seq approach identified 21 wheat genes regulated by HF infestation under normal temperatures (18 °C) and 155 genes regulated by HF infestation when plants were exposed to 35 °C for 6 h. Three differentially expressed genes (DEGs) from the RNA-Seq analysis were selected to validate the gene function of these DEGs using the RT-qPCR approach, indicating that these DEGs may differentially contribute to the expression of wheat resistance during the early stage of wheat-HF interaction under various stresses. Moreover, the jasmonate ZIM domain (JAZ) gene was also significantly upregulated under these treatments. Our results suggest that the genes in heat-stressed wheat plants are more responsive to HF infestation than those in plants growing under normal temperature conditions, and these genes in HF-infested wheat plants are more responsive to heat stress than those in plants without infestation.

2.
Cytokine ; 139: 155375, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33383381

RESUMO

BACKGROUND: Increasing evidence suggests that interleukin-6 (IL-6) trans-signaling plays a critical role in the pathogenesis of diabetic retinopathy (DR). We have previously shown that activation of IL-6 trans-signaling induces barrier dysfunction in human retinal endothelial cells (HRECs). However, the molecular mechanisms underlying these effects are not clear. The purpose of this study was to discover global gene expression changes in HRECs following activation of IL-6 trans-signaling. METHODS: HRECs were treated with IL-6 and soluble IL-6R to activate IL-6 trans-signaling, and sgp130Fc treatment was used for IL-6 trans-signaling inhibition. RNA-Seq analyses were performed for global gene expression profiling. Differential expression was determined using DESeq2, and bioinformatic analyses were performed to associate the differentially expressed genes with biological functions and pathways. RESULTS: Our analyses revealed 445 differentially expressed genes (318 upregulated and 127 downregulated) in HRECs after IL-6 trans-signaling activation. We identified several novel genes not previously associated with IL-6 signaling or endothelial dysfunction. Leukocyte adhesion, diapedesis and chemokine signaling pathways are highly enriched in differentially expressed genes. Inhibition of IL-6 trans-signaling with sgp130Fc abrogated these changes, thus highlighting the therapeutic potential of this drug. CONCLUSIONS: This study identified significant gene expression changes caused by IL-6 trans-signaling activation in HRECs. Identification of such changes has the potential to uncover the precise molecular mechanisms of IL-6 trans-signaling mediated effects in the pathology of DR.


Assuntos
Células Endoteliais/metabolismo , Expressão Gênica/genética , Interleucina-6/genética , Retina/metabolismo , Transdução de Sinais/genética , Células Cultivadas , Regulação para Baixo/genética , Perfilação da Expressão Gênica/métodos , Humanos , RNA-Seq/métodos , Regulação para Cima/genética
3.
J Econ Entomol ; 113(3): 1504-1512, 2020 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-32333676

RESUMO

Heat stress compromises wheat resistance to Hessian fly (HF, Mayetiola destructor (Say)) (Diptera: Cecidomyiidae) infestation. The objective of this research is to analyze the molecular basis of heat-induced loss of wheat resistance to HF infestation using RNA Sequencing (RNA-seq). To this end, two resistant wheat cultivars 'Molly' and 'Caldwell' containing the resistance genes H13 and H6, respectively, were infested with an avirulent HF biotype GP and treated with different temperatures to examine the impact of heat stress on their resistance phenotypes. Tissue samples collected from HF feeding sites in Molly plants were subjected to RNA-seq analysis to determine the effect of heat stress on transcript expression of genes in wheat plants. Our results indicate that resistance to HF infestation in Caldwell is more sensitive to heat stress than that in Molly, and that heat stress down-regulates most genes involved in primary metabolism and biosynthesis of lignin and cuticular wax, but up-regulate most or all genes involved in auxin and 12-oxo-phytodienoic acid (OPDA) signaling pathways. Our results and previous reports suggest that heat stress may impair the processes in wheat plants that produce and mobilize chemical resources needed for synthesizing defensive compounds, weaken cell wall and cuticle defense, decrease OPDA signaling, but increase auxin signaling, leading to the suppressed resistance and activation of susceptibility.


Assuntos
Dípteros , Triticum , Animais , Sequência de Bases , RNA , Análise de Sequência de RNA , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...