Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 44: 101137, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285300

RESUMO

OBJECTIVE: Increasing adaptive thermogenesis by stimulating browning in white adipose tissue is a promising method of improving metabolic health. However, the molecular mechanisms underlying this transition remain elusive. Our study examined the molecular determinants driving the differentiation of precursor cells into thermogenic adipocytes. METHODS: In this study, we conducted temporal high-resolution proteomic analysis of subcutaneous white adipose tissue (scWAT) after cold exposure in mice. This was followed by loss- and gain-of-function experiments using siRNA-mediated knockdown and CRISPRa-mediated induction of gene expression, respectively, to evaluate the function of the transcriptional regulator Y box-binding protein 1 (YBX1) during adipogenesis of brown pre-adipocytes and mesenchymal stem cells. Transcriptomic analysis of mesenchymal stem cells following induction of endogenous Ybx1 expression was conducted to elucidate transcriptomic events controlled by YBX1 during adipogenesis. RESULTS: Our proteomics analysis uncovered 509 proteins differentially regulated by cold in a time-dependent manner. Overall, 44 transcriptional regulators were acutely upregulated following cold exposure, among which included the cold-shock domain containing protein YBX1, peaking after 24 h. Cold-induced upregulation of YBX1 also occurred in brown adipose tissue, but not in visceral white adipose tissue, suggesting a role of YBX1 in thermogenesis. This role was confirmed by Ybx1 knockdown in brown and brite preadipocytes, which significantly impaired their thermogenic potential. Conversely, inducing Ybx1 expression in mesenchymal stem cells during adipogenesis promoted browning concurrent with an increased expression of thermogenic markers and enhanced mitochondrial respiration. At a molecular level, our transcriptomic analysis showed that YBX1 regulates a subset of genes, including the histone H3K9 demethylase Jmjd1c, to promote thermogenic adipocyte differentiation. CONCLUSION: Our study mapped the dynamic proteomic changes of murine scWAT during browning and identified YBX1 as a novel factor coordinating the genomic mechanisms by which preadipocytes commit to brite/beige lineage.


Assuntos
Tecido Adiposo Branco/metabolismo , Termogênese/genética , Termogênese/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adipócitos Marrons/metabolismo , Adipogenia , Tecido Adiposo Marrom/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Regulação da Expressão Gênica , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Proteômica , Gordura Subcutânea/metabolismo , Transcriptoma , Regulação para Cima
2.
J Interferon Cytokine Res ; 35(9): 710-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26057332

RESUMO

The cytokine granulocyte colony-stimulating factor (G-CSF) binds to its receptor (G-CSFR) to stimulate hematopoietic stem cell mobilization, myelopoiesis, and the production and activation of neutrophils. In response to exercise-induced muscle damage, G-CSF is increased in circulation and G-CSFR has recently been identified in skeletal muscle cells. While G-CSF/G-CSFR activation mediates pro- and anti-inflammatory responses, our understanding of the role and regulation in the muscle is limited. The aim of this study was to investigate, in vitro and in vivo, the role and regulation of G-CSF and G-CSFR in skeletal muscle under conditions of muscle inflammation and damage. First, C2C12 myotubes were treated with lipopolysaccharide (LPS) with and without G-CSF to determine if G-CSF modulates the inflammatory response. Second, the regulation of G-CSF and its receptor was measured following eccentric exercise-induced muscle damage and the expression levels we investigated for redox sensitivity by administering the antioxidant N-acetylcysteine (NAC). LPS stimulation of C2C12 myotubes resulted in increases in G-CSF, interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-α (TNFα) messenger RNA (mRNA) and an increase in G-CSF, IL-6, and MCP-1 release from C2C12 myotubes. The addition of G-CSF following LPS stimulation of C2C12 myotubes increased IL-6 mRNA and cytokine release into the media, however it did not affect MCP-1 or TNFα. Following eccentric exercise-induced muscle damage in humans, G-CSF levels were either marginally increased in circulation or remain unaltered in skeletal muscle. Similarly, G-CSFR levels remained unchanged in response to damaging exercise and G-CSF/G-CSFR did not change in response to NAC. Collectively, these findings suggest that G-CSF may cooperate with IL-6 and potentially promote muscle regeneration in vitro, whereas in vivo aseptic inflammation induced by exercise did not change G-CSF and G-CSFR responses. These observations suggest that different models of inflammation produce a different G-CSF response.


Assuntos
Fator Estimulador de Colônias de Granulócitos/metabolismo , Inflamação/metabolismo , Músculo Esquelético/metabolismo , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo , Acetilcisteína/farmacologia , Adulto , Antioxidantes/farmacologia , Quimiocina CCL2/metabolismo , Exercício Físico/fisiologia , Humanos , Inflamação/induzido quimicamente , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Músculo Esquelético/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...