Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39029121

RESUMO

PURPOSE: Ophthalmic disease may rarely be a presenting feature of chronic myeloid leukemia (CML). METHODS: We report a case of a 53-year-old man with type 1 diabetes mellitus who presented with a rapid onset of bilateral blurred vision. RESULTS: He was noted to have bilateral macular edema and was initially treated for presumed diabetic macular edema (DME) with intravitreal alifbercept injections. One month later, there was complete resolution of his macular edema. Review of his history and imaging revealed features atypical for DME, specifically; the rapid onset of bilateral blurred vision over 2-3 weeks, numerous cotton wool spots within the macula, the absence of any exudates, the symmetrical macular edema with a "vaulted ceiling" appearance (more typical of cystoid macular edema) and the dramatic response to a single intravitreal aflibercept injection. One week after his intravitreal injection, the patient was diagnosed with CML following marked leucocytosis on a routine blood test by his general practitioner. Although uncommon, sudden onset bilateral edema in the absence of other chronic diabetic changes should prompt consideration of an underlying haematological cause. CONCLUSION: This case highlights the importance of considering CML as a differential diagnosis in patients presenting with sudden onset, bilateral cystoid macular oedema. Vigilance is especially important in patients with co-existing diabetic retinopathy as the clinical features of leukemic retinopathy can overlap. Furthermore, the diagnosis of CML in a patient with diabetes mellitus should prompt extra observation for accelerated worsening of diabetic retinopathy.

2.
PLoS One ; 14(10): e0223755, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31613911

RESUMO

PURPOSE: To determine whether visual-tactile sensory substitution utilizing the Low-vision Enhancement Optoelectronic (LEO) Belt prototype is suitable as a new visual aid for those with reduced peripheral vision by assessing mobility performance and user opinions. METHODS: Sighted subjects (n = 20) and subjects with retinitis pigmentosa (RP) (n = 6) were recruited. The LEO Belt was evaluated on two cohorts: normally sighted subjects wearing goggles to artificially reduce peripheral vision to simulate stages of RP progression, and subjects with advanced visual field limitation from RP. Mobility speed and accuracy was assessed using simple mazes, with and without the LEO Belt, to determine its usefulness across disease severities and lighting conditions. RESULTS: Sighted subjects wearing most narrowed field goggles simulating most advanced RP had increased mobility accuracy (44% mean reduction in errors, p = 0.014) and self-reported confidence (77% mean increase, p = 0.004) when using the LEO Belt. Additionally, use of LEO doubled mobility accuracy for RP subjects with remaining visual fields between 10° and 20°. Further, in dim lighting, confidence scores for this group also doubled. By patient reported outcomes, subjects largely deemed the device comfortable (100%), easy to use (92.3%) and thought it had potential future benefit as a visual aid (96.2%). However, regardless of severity of vision loss or simulated vision loss, all subjects were slower to complete the mazes using the device. CONCLUSIONS: The LEO Belt improves mobility accuracy and therefore confidence in those with severely restricted peripheral vision. The LEO Belt's positive user feedback suggests it has potential to become the next generation of visual aid for visually impaired individuals. Given the novelty of this approach, we expect navigation speeds may improve with experience.


Assuntos
Retinose Pigmentar/reabilitação , Pessoas com Deficiência Visual/reabilitação , Dispositivos Eletrônicos Vestíveis , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Locomoção , Masculino , Pessoa de Meia-Idade , Retinose Pigmentar/fisiopatologia , Resultado do Tratamento , Campos Visuais , Adulto Jovem
3.
Exp Eye Res ; 165: 35-46, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847738

RESUMO

Sorsby fundus dystrophy (SFD) is an autosomal dominant macular dystrophy with an estimated prevalence of 1 in 220,000 and an onset of disease around the 4th to 6th decade of life. Similar to age-related macular degeneration (AMD), ophthalmoscopy reveals accumulation of protein/lipid deposits under the retinal pigment epithelium (RPE), referred to as drusen, in the eyes of patients with SFD. SFD is caused by variants in the gene for tissue inhibitor of metalloproteinases-3 (TIMP3), which has been found in drusen-like deposits of SFD patients. TIMP3 is constitutively expressed by RPE cells and, in healthy eyes, resides in Bruch's membrane. Most SFD-associated TIMP3 variants involve the gain or loss of a cysteine residue. This suggests the protein aberrantly forms intermolecular disulphide bonds, resulting in the formation of TIMP3 dimers. It has been demonstrated that SFD-associated TIMP3 variants are more resistant to turnover, which is thought to be a result of dimerisation and thought to explain the accumulation of TIMP3 in drusen-like deposits at the level of Bruch's membrane. An important function of TIMP3 within the outer retina is to regulate the thickness of Bruch's membrane. TIMP3 performs this function by inhibiting the activity of matrix metalloproteinases (MMPs), which have the function of catalysing breakdown of the extracellular matrix. TIMP3 has an additional function to inhibit vascular endothelial growth factor (VEGF) signalling and thereby to inhibit angiogenesis. However, it is unclear whether SFD-associated TIMP3 variant proteins retain these functions. In this review, we discuss the current understanding of the potential mechanisms underlying development of SFD and summarise all known SFD-associated TIMP3 variants. Cell culture models provide an invaluable way to study disease and identify potential treatments. These allow a greater understanding of RPE physiology and pathophysiology, including the ability to study the blood-retinal barrier as well as other RPE functions such as phagocytosis of photoreceptor outer segments. This review describes some examples of such recent in vitro studies and how they might provide new insights into degenerative diseases like SFD. Thus far, most studies on SFD have been performed using ARPE-19 cells or other, less suitable, cell-types. Now, induced pluripotent stem cell (iPSC) technologies allow the possibility to non-invasively collect somatic cells, such as dermal fibroblast cells and reprogram those to produce iPSCs. Subsequent differentiation of iPSCs can generate patient-derived RPE cells that carry the same disease-associated variant as RPE cells in the eyes of the patient. Use of these patient-derived RPE cells in novel cell culture systems should increase our understanding of how SFD and similar macular dystrophies develop.


Assuntos
Degeneração Macular , Distrofias Retinianas , Células Cultivadas , Humanos , Degeneração Macular/epidemiologia , Degeneração Macular/etiologia , Degeneração Macular/fisiopatologia , Metaloproteinases da Matriz/fisiologia , Modelos Biológicos , Neovascularização Patológica/fisiopatologia , Distrofias Retinianas/epidemiologia , Distrofias Retinianas/etiologia , Distrofias Retinianas/fisiopatologia , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...