Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 171301, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423320

RESUMO

The occurrence of harmful algal blooms (HABs) in freshwater environments has been expanded worldwide with growing frequency and severity. HABs can pose a threat to public water supplies, raising concerns about safety of treated water. Many studies have provided valuable information about the impacts of HABs and management strategies on the early-stage treatment processes (e.g., pre-oxidation and coagulation/flocculation) in conventional drinking water treatment plants (DWTPs). However, the potential effect of HAB-impacted water in the granular media filtration has not been well studied. Biologically-active filters (BAFs), which are used in drinking water treatment and rely largely on bacterial community interactions, have not been examined during HABs in full-scale DWTPs. In this study, we assessed the bacterial community structure of BAFs, functional profiles, assembly processes, and bio-interactions in the community during both severe and mild HABs. Our findings indicate that bacterial diversity in BAFs significantly decreases during severe HABs due to the predominance of bloom-associated bacteria (e.g., Spingopyxis, Porphyrobacter, and Sphingomonas). The excitation-emission matrix combined with parallel factor analysis (EEM-PARAFAC) confirmed that filter influent affected by the severe HAB contained a higher portion of protein-like substances than filter influent samples during a mild bloom. In addition, BAF community functions showed increases in metabolisms associated with intracellular algal organic matter (AOM), such as lipids and amino acids, during severe HABs. Further ecological process and network analyses revealed that severe HAB, accompanied by the abundance of bloom-associated taxa and increased nutrient availability, led to not only strong stochastic processes in the assembly process, but also a bacterial community with lower complexity in BAFs. Overall, this study provides deeper insights into BAF bacterial community structure, function, and assembly in response to HABs.


Assuntos
Água Potável , Filtração , Proliferação Nociva de Algas , Purificação da Água , Purificação da Água/métodos , Água Potável/microbiologia , Bactérias , Microbiota , Microbiologia da Água
2.
Water Res ; 184: 116120, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32726741

RESUMO

The occurrence of harmful algal blooms dominated by toxic cyanobacteria has induced continuous loadings of algal organic matter (AOM) and toxins in drinking water treatment plants. However, the impact of AOM on the active biofilms and microbial community structures of biologically-active filtration (BAF), which directly affects the contaminant removal, is not well understood. In this study, we systematically examined the effects of AOM on BAF performance and bacterial biofilm formation over 240 days, tracing the removal of specific AOM components, a cyanotoxin [microcystin-LR (MC-LR)], and microbial community responses. The component analysis (excitation and emission matrix analysis) results for AOM revealed that terrestrial humic-like substances showed the highest removal among all the identified components and were strongly correlated to MC-LR removal. In addition, reduced empty bed contact time and deactivation of biofilms significantly decreased BAF performances for both AOM and MC-LR. The active biofilm, bacterial community structure, and mlrA gene (involved in microcystin degradation) abundance demonstrated that bacterial biofilm composition responded to AOM and MC-LR, in which Rhodocyclaceae, Saprospiraceae, and Comamonadaceae were dominant. In addition, MC-LR biodegradation appeared to be more active at the top than at the bottom layer in BAF. Overall, this study provides deeper insights into the role of biofilms and filter operation on the fate of AOM and MC-LR in BAF.


Assuntos
Cianobactérias , Purificação da Água , Biofilmes , Filtração , Proliferação Nociva de Algas , Microcistinas
3.
Water Res ; 124: 630-653, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28822343

RESUMO

While disinfection provides hygienically safe drinking water, the disinfectants react with inorganic or organic precursors, leading to the formation of harmful disinfection byproducts (DBPs). Biological filtration is a process in which an otherwise conventional granular filter is designed to remove not only fine particulates but also dissolved organic matters (e.g., DBP precursors) through microbially mediated degradation. Recently, applications of biofiltration in drinking water treatment have increased significantly. This review summarizes the effectiveness of biofiltration in removing DBPs and their precursors and identifies potential factors in biofilters that may control the removal or contribute to formation of DBP and their precursors during drinking water treatment. Biofiltration can remove a fraction of the precursors of halogenated DBPs (trihalomethanes, haloacetic acids, haloketones, haloaldehydes, haloacetonitriles, haloacetamides, and halonitromethanes), while also demonstrating capability in removing bromate and halogenated DBPs, except for trihalomethanes. However, the effectiveness of biofiltration mediated removal of nitrosamine and its precursors appears to be variable. An increase in nitrosamine precursors after biofiltration was ascribed to the biomass sloughing off from media or direct nitrosamine formation in the biofilter under certain denitrifying conditions. Operating parameters, such as pre-ozonation, media type, empty bed contact time, backwashing, temperature, and nutrient addition may be optimized to control the regulated DBPs in the biofilter effluent while minimizing the formation of unregulated emerging DBPs. While summarizing the state of knowledge of biofiltration mediated control of DBPs, this review also identifies several knowledge gaps to highlight future research topics of interest.


Assuntos
Desinfecção , Poluentes Químicos da Água , Reatores Biológicos , Filtração , Trialometanos , Purificação da Água
4.
Environ Sci Technol ; 46(21): 11702-9, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23030510

RESUMO

Terminal electron accepting process (TEAP) zones developed when a simulated groundwater containing dissolved oxygen (DO), nitrate, arsenate, and sulfate was treated in a fixed-bed bioreactor system consisting of two reactors (reactors A and B) in series. When the reactors were operated with an empty bed contact time (EBCT) of 20 min each, DO-, nitrate-, sulfate-, and arsenate-reducing TEAP zones were located within reactor A. As a consequence, sulfate reduction and subsequent arsenic removal through arsenic sulfide precipitation and/or arsenic adsorption on or coprecipitation with iron sulfides occurred in reactor A. This resulted in the removal of arsenic-laden solids during backwashing of reactor A. To minimize this by shifting the sulfate-reducing zone to reactor B, the EBCT of reactor A was sequentially lowered from 20 min to 15, 10, and 7 min. While 50 mg/L (0.81 mM) nitrate was completely removed at all EBCTs, more than 90% of 300 µg/L (4 µM) arsenic was removed with the total EBCT as low as 27 min. Sulfate- and arsenate-reducing bacteria were identified throughout the system through clone libraries and quantitative PCR targeting the 16S rRNA, dissimilatory (bi)sulfite reductase (dsrAB), and dissimilatory arsenate reductase (arrA) genes. Results of reverse transcriptase (RT) qPCR of partial dsrAB (i.e., dsrA) and arrA transcripts corresponded with system performance. The RT qPCR results indicated colocation of sulfate- and arsenate-reducing activities, in the presence of iron(II), suggesting their importance in arsenic removal.


Assuntos
Arsênio/metabolismo , Reatores Biológicos , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Arseniatos/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Elétrons , Genes Bacterianos/genética , Filogenia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfatos/metabolismo
5.
Water Res ; 46(4): 1309-17, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22209197

RESUMO

Contaminant removal from drinking water sources under reducing conditions conducive for the growth of denitrifying, arsenate reducing, and sulfate reducing microbes using a fixed-bed bioreactor may require oxygen-free gas (e.g., N2 gas) during backwashing. However, the use of air-assisted backwashing has practical advantages, including simpler operation, improved safety, and lower cost. A study was conducted to evaluate whether replacing N2 gas with air during backwashing would impact performance in a nitrate and arsenic removing anaerobic bioreactor system that consisted of two biologically active carbon reactors in series. Gas-assisted backwashing, comprised of 2 min of gas injection to fluidize the bed and dislodge biomass and solid phase products, was performed in the first reactor (reactor A) every two days. The second reactor (reactor B) was subjected to N2 gas-assisted backwashing every 3-4 months. Complete removal of 50 mg/L NO3- was achieved in reactor A before and after the switch from N2-assisted backwashing (NAB) to air-assisted backwashing (AAB). Substantial sulfate removal was achieved with both backwashing strategies. Prolonged practice of AAB (more than two months), however, diminished sulfate reduction in reactor B somewhat. Arsenic removal in reactor A was impacted slightly by long-term use of AAB, but arsenic removals achieved by the entire system during NAB and AAB periods were not significantly different (p>0.05) and arsenic concentrations were reduced from approximately 200 µg/L to below 20 µg/L. These results indicate that AAB can be implemented in anaerobic nitrate and arsenic removal systems.


Assuntos
Ar , Arsênio/isolamento & purificação , Reatores Biológicos/microbiologia , Água Potável/química , Nitratos/isolamento & purificação , Purificação da Água/instrumentação , Purificação da Água/métodos , Acetatos/isolamento & purificação , Anaerobiose , Cloretos/isolamento & purificação , Sulfatos/isolamento & purificação , Fatores de Tempo , Eliminação de Resíduos Líquidos
6.
Appl Environ Microbiol ; 76(22): 7473-81, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20889793

RESUMO

Phosphorus was added as a nutrient to bench-scale and pilot-scale biologically active carbon (BAC) reactors operated for perchlorate and nitrate removal from contaminated groundwater. The two bioreactors responded similarly to phosphorus addition in terms of microbial community function (i.e., reactor performance), while drastically different responses in microbial community structure were detected. Improvement in reactor performance with respect to perchlorate and nitrate removal started within a few days after phosphorus addition for both reactors. Microbial community structures were evaluated using molecular techniques targeting 16S rRNA genes. Clone library results showed that the relative abundance of perchlorate-reducing bacteria (PRB) Dechloromonas and Azospira in the bench-scale reactor increased from 15.2% and 0.6% to 54.2% and 11.7% after phosphorus addition, respectively. Real-time quantitative PCR (qPCR) experiments revealed that these increases started within a few days after phosphorus addition. In contrast, after phosphorus addition, the relative abundance of Dechloromonas in the pilot-scale reactor decreased from 7.1 to 0.6%, while Zoogloea increased from 17.9 to 52.0%. The results of this study demonstrated that similar operating conditions for bench-scale and pilot-scale reactors resulted in similar contaminant removal performances, despite dramatically different responses from microbial communities. These findings suggest that it is important to evaluate the microbial community compositions inside bioreactors used for drinking water treatment, as they determine the microbial composition in the effluent and impact downstream treatment requirements for drinking water production. This information could be particularly relevant to drinking water safety, if pathogens or disinfectant-resistant bacteria are detected in the bioreactors.


Assuntos
Bactérias/classificação , Bactérias/genética , Biodiversidade , Reatores Biológicos , Fósforo/metabolismo , Microbiologia da Água , Purificação da Água , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Nitratos/metabolismo , Percloratos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Poluentes Químicos da Água/metabolismo
7.
Water Res ; 44(17): 4958-69, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20732708

RESUMO

A novel bioreactor system, consisting of two biologically active carbon (BAC) reactors in series, was developed for the simultaneous removal of nitrate and arsenic from a synthetic groundwater supplemented with acetic acid. A mixed biofilm microbial community that developed on the BAC was capable of utilizing dissolved oxygen, nitrate, arsenate, and sulfate as the electron acceptors. Nitrate was removed from a concentration of approximately 50 mg/L in the influent to below the detection limit of 0.2 mg/L. Biologically generated sulfides resulted in the precipitation of the iron sulfides mackinawite and greigite, which concomitantly removed arsenic from an influent concentration of approximately 200 ug/L to below 20 ug/L through arsenic sulfide precipitation and surface precipitation on iron sulfides. This study showed for the first time that arsenic and nitrate can be simultaneously removed from drinking water sources utilizing a bioreactor system.


Assuntos
Arsênio/isolamento & purificação , Reatores Biológicos , Nitratos/isolamento & purificação , Purificação da Água/instrumentação , Purificação da Água/métodos , Abastecimento de Água/análise , Biodegradação Ambiental , Solo , Espectroscopia por Absorção de Raios X , Difração de Raios X
8.
Water Res ; 37(1): 206-14, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12465802

RESUMO

Flow rate, electron donor addition, and biomass control were evaluated in order to optimize perchlorate (ClO4-) removal from drinking water using biologically active carbon (BAC) filtration. Influent dissolved oxygen (DO) was lowered from ambient conditions to approximately 2.5 mg/L for all experiments using a nitrogen sparge. When influent nitrate concentration was 0-2.0 mg/L, 1.6-2.8 mg/L as carbon of acetate or ethanol was required to achieve and sustain the complete removal of 50 microg/L perchlorate in a BAC filter. Most or all of the exogenous acetate and ethanol was removed during biofiltration. When a 72-h electron donor feed failure was simulated, a maximum perchlorate breakthrough of 18 microg/L was observed and, once electron donor was reapplied, 9 days were required to reestablish complete perchlorate removal. During a 24-h electron donor feed failure simulation, the maximum effluent perchlorate concentration detected was 6.7 microg/L. Within 24 h of reactivating the electron donor, the filter regained its capacity to consistently remove 50 microg/L perchlorate to below detection. Although biomass growth diminished the filter's ability to consistently remove perchlorate, a cleaning procedure immediately restored stable, complete perchlorate removal. This cleaning procedure was required approximately every 50 days (4800 bed volumes) when influent DO concentration was 2.5 mg/L. Empty-bed contact time (EBCT) experiments showed that 80% perchlorate removal was achieved using a 5-min EBCT, and complete perchlorate removal was observed for an EBCT of 9 min. It was also demonstrated that BAC filtration consistently removed perchlorate to below detection for influent perchlorate concentrations ranging from 10 to 300 microg/L, influent sulfate concentrations between 0 and 220 mg/L, influent pH values of 6.5-9.0, and operating temperatures of 5-22 degrees C.


Assuntos
Reatores Biológicos , Percloratos/isolamento & purificação , Compostos de Sódio/isolamento & purificação , Purificação da Água/métodos , Abastecimento de Água , Biomassa , Carbono/química , Filtração , Nitrogênio/química , Percloratos/química , Controle de Qualidade , Compostos de Sódio/química , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...