Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 29(3): 949-972, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33429080

RESUMO

Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most prevalent age-related neurodegenerative diseases, and currently no effective clinical treatments exist for either, despite decades of clinical trials. The failure to translate preclinical findings into effective treatments is indicative of a problem in the current evaluation pipeline for potential therapeutics. At present, there are no useful animal models for AD and PD research that reflect the entire biology of the diseases, specifically, the more common non-Mendelian forms. Whereas the field continues to seek suitable rodent models for investigating potential therapeutics for these diseases, rodent models have still been used primarily for preclinical studies. Here, we advocate for a paradigm shift toward the application of human-induced pluripotent stem cell (hiPSC)-derived systems for PD and AD modeling and the development of improved human-based models in a dish for drug discovery and preclinical assessment of therapeutic targets.


Assuntos
Doença de Alzheimer/terapia , Modelos Animais de Doenças , Células-Tronco Pluripotentes Induzidas/citologia , Doença de Parkinson/terapia , Transplante de Células-Tronco/métodos , Animais , Humanos , Roedores
2.
STAR Protoc ; 1(3): 100152, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377046

RESUMO

Lentiviral vectors are an ideal gene-delivery system for large gene-editing tools, such as the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system, due to their high packaging capacity and broad tropism. Here, we present a calcium phosphate-based protocol for lentiviral production and concentration for in vitro and in vivo use. This revised procedure has been optimized to ensure high viral titers and transduction efficiency and is scalable to meet specific production needs.


Assuntos
Técnicas Genéticas , Vetores Genéticos/metabolismo , Lentivirus/genética , Células HEK293 , Humanos , Plasmídeos/genética , Transfecção , Ultracentrifugação , Vírion/metabolismo
3.
eNeuro ; 7(2)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32198158

RESUMO

A key goal in hippocampal research is to understand how neuronal activity is generated and organized across hippocampal subregions to enable memory formation and retrieval. Neuronal activity in CA2 is regulated by spatial and social investigation as well as by novelty (Mankin et al., 2015; Alexander et al., 2016), and CA2 activity controls population oscillatory activity in the slow γ and ripple ranges within hippocampus (Kay et al., 2016; Oliva et al., 2016; Boehringer et al., 2017; Alexander et al., 2018). CA2 neurons are also required for social recognition memory (Stevenson and Caldwell, 2012; Hitti and Siegelbaum, 2014; Smith et al., 2016). Because CA1 exhibits layer-specific organization (Scheffer-Teixeira et al., 2012; Lasztóczi and Klausberger, 2014, 2016) reflective of its inputs (Fernández-Ruiz et al., 2012; Schomburg et al., 2014), and because CA2 activity controls CA1 slow γ (Alexander et al., 2018), we hypothesized that silencing CA2 would affect CA1 slow γ in a layer-specific manner during investigation of a novel social stimulus. While recording from CA1, we leveraged molecular tools to selectively target and inhibit CA2 pyramidal cells using inhibitory DREADDs while subject mice investigated novel animals or objects. We found that CA2 inhibition reduced slow γ power during investigation of a novel animal and fast γ power during both novel object and animal investigation in a manner reflective of the CA2 axonal projection zones within CA1. Our results suggest that CA2 contributes to CA1 slow and fast γ oscillations in a stimulus-specific manner.


Assuntos
Hipocampo , Células Piramidais , Potenciais de Ação , Animais , Região CA1 Hipocampal , Memória , Camundongos , Neurônios
4.
Elife ; 72018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30387713

RESUMO

Hippocampal oscillations arise from coordinated activity among distinct populations of neurons and are associated with cognitive functions. Much progress has been made toward identifying the contribution of specific neuronal populations in hippocampal oscillations, but less is known about the role of hippocampal area CA2, which is thought to support social memory. Furthermore, the little evidence on the role of CA2 in oscillations has yielded conflicting conclusions. Therefore, we sought to identify the contribution of CA2 to oscillations using a controlled experimental system. We used excitatory and inhibitory DREADDs to manipulate CA2 neuronal activity and studied resulting hippocampal-prefrontal cortical network oscillations. We found that modification of CA2 activity bidirectionally regulated hippocampal and prefrontal cortical low-gamma oscillations and inversely modulated hippocampal ripple oscillations in mice. These findings support a role for CA2 in low-gamma generation and ripple modulation within the hippocampus and underscore the importance of CA2 in extrahippocampal oscillations.


Assuntos
Potenciais de Ação , Região CA2 Hipocampal/fisiologia , Ritmo Gama , Neurônios/fisiologia , Animais , Camundongos , Córtex Pré-Frontal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...