Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Wellcome Open Res ; 9: 106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966305

RESUMO

We present a genome assembly from an individual male Adalia decempunctata (the ten-spot ladybird; Arthropoda; Insecta; Coleoptera; Coccinellidae). The genome sequence is 489.4 megabases in span. Most of the assembly is scaffolded into 12 chromosomal pseudomolecules, including the X and Y sex chromosomes. The mitochondrial genome has also been assembled and is 19.68 kilobases in length.

2.
Wellcome Open Res ; 8: 186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476650

RESUMO

We present a genome assembly from an individual Halyzia sedecimguttata (the orange ladybird, Arthropoda; Insecta; Coleoptera, Coccinellidae). The genome sequence is 919.1 megabases in span. Most of the assembly is scaffolded into 10 chromosomal pseudomolecules, including the X sex chromosome. The mitochondrial genome has also been assembled and is 21.0 kilobases in length. Gene annotation of this assembly on Ensembl identified 27,547 protein coding genes.

3.
Bioscience ; 73(3): 168-181, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36936381

RESUMO

Bioblitzes are a popular approach to engage people and collect biodiversity data. Despite this, few studies have actually evaluated the multiple outcomes of bioblitz activities. We used a systematic review, an analysis of data from more than 1000 bioblitzes, and a detailed analysis of one specific bioblitz to inform our inquiry. We evaluated five possible bioblitz outcomes, which were creating a species inventory, engaging people in biological recording, enhancing learning about nature, discovering a species new to an area, and promoting an organization. We conclude that bioblitzes are diverse but overall effective at their aims and have advantages over unstructured biodiversity recording. We demonstrate for the first time that bioblitzes increase the recording activity of the participants for several months after the event. In addition, we provide evidence that bioblitzes are effective at bringing people and organizations together to build communities of professionals and amateurs, critical for conserving and protecting biodiversity.

4.
Conserv Biol ; 37(1): e13965, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35686511

RESUMO

Ladybirds (Coleoptera: Coccinellidae) provide services that are critical to food production, and they fulfill an ecological role as a food source for predators. The richness, abundance, and distribution of ladybirds, however, are compromised by many anthropogenic threats. Meanwhile, a lack of knowledge of the conservation status of most species and the factors driving their population dynamics hinders the development and implementation of conservation strategies for ladybirds. We conducted a review of the literature on the ecology, diversity, and conservation of ladybirds to identify their key ecological threats. Ladybird populations are most affected by climate factors, landscape composition, and biological invasions. We suggest mitigating actions for ladybird conservation and recovery. Short-term actions include citizen science programs and education, protective measures for habitat recovery and threatened species, prevention of the introduction of non-native species, and the maintenance and restoration of natural areas and landscape heterogeneity. Mid-term actions involve the analysis of data from monitoring programs and insect collections to disentangle the effect of different threats to ladybird populations, understand habitat use by taxa on which there is limited knowledge, and quantify temporal trends of abundance, diversity, and biomass along a management-intensity gradient. Long-term actions include the development of a worldwide monitoring program based on standardized sampling to fill data gaps, increase explanatory power, streamline analyses, and facilitate global collaborations.


Las catarinas (Coleoptera: Coccinellidae) proporcionan servicios que son críticos para la producción de alimento, y juegan un papel ecológico como fuente de alimento para depredadores. Sin embargo, la riqueza, abundancia y distribución de catarinas están en peligro debido a muchas amenazas antropogénicas. La carencia de conocimiento sobre el estatus de conservación de la mayoría de las especies y los factores que inciden en su dinámica poblacional dificulta el desarrollo e implementación de estrategias de conservación para las catarinas. Realizamos una revisión de la literatura sobre la ecología, diversidad y conservación de catarinas para identificar sus amenazas ecológicas clave. Las poblaciones de catarinas fueron afectadas mayormente por factores climáticos, composición del paisaje e invasiones biológicas. Proponemos acciones de mitigación para la conservación y recuperación de catarinas. Acciones a corto plazo incluyen programas de ciencia y educación ciudadana, medidas de protección para la recuperación de hábitat y de especies amenazadas, prevención de la introducción de especies no nativas y el mantenimiento y restauración de áreas naturales y la heterogeneidad del paisaje. Acciones a mediano plazo implican el análisis de datos obtenidos de programas de monitoreo y colecciones de insectos para desenmarañar el efecto de las diferentes amenazas a las poblaciones de catarinas, comprender el uso del hábitat por taxa de los que se tiene conocimiento limitado y cuantifica las tendencias temporales de la abundancia, diversidad y biomasa a lo largo de un gradiente de intensidad de manejo. Acciones a largo plazo incluyen el desarrollo de un programa de monitoreo a nivel mundial basado en muestreos estandarizados para subsanar la falta de datos, incrementar el poder explicativo, optimizar los análisis y facilitar colaboraciones globales.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Espécies em Perigo de Extinção , Dinâmica Populacional
5.
PLoS One ; 11(3): e0151595, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27007973

RESUMO

Action to reduce anthropogenic impact on the environment and species within it will be most effective when targeted towards activities that have the greatest impact on biodiversity. To do this effectively we need to better understand the relative importance of different activities and how they drive changes in species' populations. Here, we present a novel, flexible framework that reviews evidence for the relative importance of these drivers of change and uses it to explain recent alterations in species' populations. We review drivers of change across four hundred species sampled from a broad range of taxonomic groups in the UK. We found that species' population change (~1970-2012) has been most strongly impacted by intensive management of agricultural land and by climatic change. The impact of the former was primarily deleterious, whereas the impact of climatic change to date has been more mixed. Findings were similar across the three major taxonomic groups assessed (insects, vascular plants and vertebrates). In general, the way a habitat was managed had a greater impact than changes in its extent, which accords with the relatively small changes in the areas occupied by different habitats during our study period, compared to substantial changes in habitat management. Of the drivers classified as conservation measures, low-intensity management of agricultural land and habitat creation had the greatest impact. Our framework could be used to assess the relative importance of drivers at a range of scales to better inform our policy and management decisions. Furthermore, by scoring the quality of evidence, this framework helps us identify research gaps and needs.


Assuntos
Agricultura , Biodiversidade , Mudança Climática , Reino Unido
6.
Ecol Entomol ; 40(4): 336-348, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26435571

RESUMO

1. Harmonia axyridis was first recorded in Britain in 2004. Two subsequent earlier records were received from 2003. 2. The UK Ladybird Survey, a citizen science initiative involving online recording, was launched in 2005 to encourage people across Britain to track the spread of H. axyridis. Tens of thousands of people have provided records of H. axyridis and other species of ladybirds, creating an invaluable dataset for large-scale and long-term research. Declines in the distribution of seven (of eight assessed) native species of ladybird have been demonstrated, and correlated with the arrival of H. axyridis, using the records collated through the UK Ladybird Survey. 3. Experimental research and field surveys have also contributed to our understanding of the ecology of H. axyridis and particularly the process of invasion. Harmonia axyridis arrived in Britain through dispersal and introduction events from regions in which it was deliberately released as a biological control agent. The rapid spread of this species has been attributed to its high natural dispersal capability by means of both flight and anthropogenic transport. A number of factors have contributed to the successful establishment and indeed dominance of this polymorphic species within aphidophagous guilds, including high reproductive capacity, intra-guild predation, eurytopic nature, high resistance to natural enemies within the invaded range, and potentially phenotypic plasticity. 4. The global invasion by H. axyridis and subsequent research on this species has contributed to the general understanding of biological invasions.

7.
PLoS One ; 8(12): e82278, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367512

RESUMO

Understanding the characteristics and drivers of dispersal is crucial for predicting population dynamics, particularly in range-shifting species. Studying long-distance dispersal in insects is challenging, but recent advances in entomological radar offer unique insights. We analysed 10 years of radar data collected at Rothamsted Research, U.K., to investigate characteristics (altitude, speed, seasonal and annual trends) and drivers (aphid abundance, air temperature, wind speed and rainfall) of high-altitude flight of the two most abundant U.K. ladybird species (native Coccinella septempunctata and invasive Harmonia axyridis). These species cannot be distinguished in the radar data since their reflectivity signals overlap, and they were therefore analysed together. However, their signals do not overlap with other, abundant insects so we are confident they constitute the overwhelming majority of the analysed data. The target species were detected up to ∼1100 m above ground level, where displacement speeds of up to ∼60 km/h were recorded, however most ladybirds were found between ∼150 and 500 m, and had a mean displacement of 30 km/h. Average flight time was estimated, using tethered flight experiments, to be 36.5 minutes, but flights of up to two hours were observed. Ladybirds are therefore potentially able to travel 18 km in a "typical" high-altitude flight, but up to 120 km if flying at higher altitudes, indicating a high capacity for long-distance dispersal. There were strong seasonal trends in ladybird abundance, with peaks corresponding to the highest temperatures of mid-summer, and warm air temperature was the key driver of ladybird flight. Climatic warming may therefore increase the potential for long-distance dispersal in these species. Low aphid abundance was a second significant factor, highlighting the important role of aphid population dynamics in ladybird dispersal. This research illustrates the utility of radar for studying high-altitude insect flight and has important implications for predicting long-distance dispersal.


Assuntos
Altitude , Besouros/fisiologia , Voo Animal/fisiologia , Migração Animal/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...