Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(14): 3941-3953, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37095743

RESUMO

Drylands are key contributors to interannual variation in the terrestrial carbon sink, which has been attributed primarily to broad-scale climatic anomalies that disproportionately affect net primary production (NPP) in these ecosystems. Current knowledge around the patterns and controls of NPP is based largely on measurements of aboveground net primary production (ANPP), particularly in the context of altered precipitation regimes. Limited evidence suggests belowground net primary production (BNPP), a major input to the terrestrial carbon pool, may respond differently than ANPP to precipitation, as well as other drivers of environmental change, such as nitrogen deposition and fire. Yet long-term measurements of BNPP are rare, contributing to uncertainty in carbon cycle assessments. Here, we used 16 years of annual NPP measurements to investigate responses of ANPP and BNPP to several environmental change drivers across a grassland-shrubland transition zone in the northern Chihuahuan Desert. ANPP was positively correlated with annual precipitation across this landscape; however, this relationship was weaker within sites. BNPP, on the other hand, was weakly correlated with precipitation only in Chihuahuan Desert shrubland. Although NPP generally exhibited similar trends among sites, temporal correlations between ANPP and BNPP within sites were weak. We found chronic nitrogen enrichment stimulated ANPP, whereas a one-time prescribed burn reduced ANPP for nearly a decade. Surprisingly, BNPP was largely unaffected by these factors. Together, our results suggest that BNPP is driven by a different set of controls than ANPP. Furthermore, our findings imply belowground production cannot be inferred from aboveground measurements in dryland ecosystems. Improving understanding around the patterns and controls of dryland NPP at interannual to decadal scales is fundamentally important because of their measurable impact on the global carbon cycle. This study underscores the need for more long-term measurements of BNPP to improve assessments of the terrestrial carbon sink, particularly in the context of ongoing environmental change.


Assuntos
Ecossistema , Incêndios , Carbono , Nitrogênio , Pradaria , Chuva , Poaceae
2.
Ecol Lett ; 23(3): 527-536, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31912647

RESUMO

Primary production, a key regulator of the global carbon cycle, is highly responsive to variations in climate. Yet, a detailed, continental-scale risk assessment of climate-related impacts on primary production is lacking. We combined 16 years of MODIS NDVI data, a remotely sensed proxy for primary production, with observations from 1218 climate stations to derive values of ecosystem sensitivity to precipitation and aridity. For the first time, we produced an empirically-derived map of ecosystem sensitivity to climate across the conterminous United States. Over this 16-year period, annual primary production values were most sensitive to precipitation and aridity in dryland and grassland ecosystems. Century-long trends measured at the climate stations showed intensifying aridity and climatic variability in many of these sensitive regions. Dryland ecosystems in the western US may be particularly vulnerable to reductions in primary production and consequent degradation of ecosystem services as climate change and variability increase in the future.


Assuntos
Ecossistema , Pradaria , Ciclo do Carbono , Mudança Climática , Estados Unidos
3.
Oecologia ; 176(3): 751-62, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25164491

RESUMO

For the southwestern United States, climate models project an increase in extreme precipitation events and prolonged dry periods. While most studies emphasize plant functional type response to precipitation variability, it is also important to understand the physiological characteristics of dominant plant species that define plant community composition and, in part, regulate ecosystem response to climate change. We utilized rainout shelters to alter the magnitude and frequency of rainfall and measured the physiological response of the dominant C4 grasses, Bouteloua eriopoda and Bouteloua gracilis. We hypothesized that: (1) the more drought-adapted B. eriopoda would exhibit faster recovery and higher rates of leaf-level photosynthesis (A(net)) than B. gracilis, (2) A(net) would be greater under the higher average soil water content in plots receiving 30-mm rainfall events, (3) co-dominance of B. eriopoda and B. gracilis in the ecotone would lead to intra-specific differences from the performance of each species at the site where it was dominant. Throughout the study, soil moisture explained 40-70% of the variation in A(net). Consequently, differences in rainfall treatments were not evident from intra-specific physiological function without sufficient divergence in soil moisture. Under low frequency, larger rainfall events B. gracilis exhibited improved water status and longer periods of C gain than B. eriopoda. Results from this study indicate that less frequent and larger rainfall events could provide a competitive advantage to B. gracilis and influence species composition across this arid-semiarid grassland ecotone.


Assuntos
Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Chuva , Mudança Climática , Clima Desértico , New Mexico , Fotossíntese , Estações do Ano , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...